New Mexico Consortium, Los Alamos, NM 87544, USA.
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Acta Crystallogr D Struct Biol. 2023 Mar 1;79(Pt 3):234-244. doi: 10.1107/S205979832300102X. Epub 2023 Feb 27.
Experimental structure determination can be accelerated with artificial intelligence (AI)-based structure-prediction methods such as AlphaFold. Here, an automatic procedure requiring only sequence information and crystallographic data is presented that uses AlphaFold predictions to produce an electron-density map and a structural model. Iterating through cycles of structure prediction is a key element of this procedure: a predicted model rebuilt in one cycle is used as a template for prediction in the next cycle. This procedure was applied to X-ray data for 215 structures released by the Protein Data Bank in a recent six-month period. In 87% of cases our procedure yielded a model with at least 50% of C atoms matching those in the deposited models within 2 Å. Predictions from the iterative template-guided prediction procedure were more accurate than those obtained without templates. It is concluded that AlphaFold predictions obtained based on sequence information alone are usually accurate enough to solve the crystallographic phase problem with molecular replacement, and a general strategy for macromolecular structure determination that includes AI-based prediction both as a starting point and as a method of model optimization is suggested.
实验结构的确定可以通过基于人工智能(AI)的结构预测方法(如 AlphaFold)来加速。在这里,提出了一种仅需要序列信息和晶体学数据的自动程序,该程序使用 AlphaFold 的预测结果来生成电子密度图和结构模型。在这个过程中,通过结构预测的循环迭代是一个关键要素:在一个循环中重建的预测模型在下一个循环中用作预测的模板。该程序应用于最近六个月内蛋白质数据库发布的 215 个结构的 X 射线数据。在 87%的情况下,我们的程序生成的模型中,至少有 50%的 C 原子与沉积模型中的 C 原子匹配,误差在 2Å 以内。迭代模板引导预测程序的预测结果比没有模板的预测结果更准确。因此得出结论,仅基于序列信息获得的 AlphaFold 预测结果通常足以解决基于分子置换的晶体学相位问题,并提出了一种包含基于 AI 的预测的大分子结构确定的一般策略,该策略将其既作为起点又作为模型优化方法。