Suppr超能文献

两个介孔域对聚烯烃催化解构的效果优于一个。

Two Mesoporous Domains Are Better Than One for Catalytic Deconstruction of Polyolefins.

作者信息

Tennakoon Akalanka, Wu Xun, Meirow Max, Howell Daniel, Willmon Jarod, Yu Jiaqi, Lamb Jessica V, Delferro Massimiliano, Luijten Erik, Huang Wenyu, Sadow Aaron D

机构信息

Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.

Chemical and Biological Sciences Division, Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States.

出版信息

J Am Chem Soc. 2023 Aug 16;145(32):17936-17944. doi: 10.1021/jacs.3c05447. Epub 2023 Aug 4.

Abstract

Catalytic hydrogenolysis of polyolefins into valuable liquid, oil, or wax-like hydrocarbon chains for second-life applications is typically accompanied by the hydrogen-wasting co-formation of low value volatiles, notably methane, that increase greenhouse gas emissions. Catalytic sites confined at the bottom of mesoporous wells, under conditions in which the pore exerts the greatest influence over the mechanism, are capable of producing less gases than unconfined sites. A new architecture was designed to emphasize this pore effect, with the active platinum nanoparticles embedded between linear, hexagonal mesoporous silica and gyroidal cubic MCM-48 silica (mSiO/Pt/MCM-48). This catalyst deconstructs polyolefins selectively into ∼C-C paraffins and cleaves C-C bonds at a rate (TOF = 4.2 ± 0.3 s) exceeding that of materials lacking these combined features while generating negligible volatile side products including methane. The time-independent product distribution is consistent with a processive mechanism for polymer deconstruction. In contrast to time- and polymer length-dependent products obtained from non-porous catalysts, mSiO/Pt/MCM-48 yields a C-centered Gaussian distribution of waxy hydrocarbons from polyolefins of varying molecular weight, composition, and physical properties, including low-density polyethylene, isotactic polypropylene, ultrahigh-molecular-weight polyethylene, and mixtures of multiple, post-industrial polyolefins. Coarse-grained simulation reveals that the porous-core architecture enables the paraffins to diffuse away from the active platinum site, preventing secondary reactions that produce gases.

摘要

将聚烯烃催化氢解为有价值的液体、油或蜡状烃链以用于二次利用,通常伴随着低价值挥发物(尤其是甲烷)的共生成,这会造成氢气浪费并增加温室气体排放。在中孔孔道底部受限的催化位点,在孔对反应机理影响最大的条件下,比非受限位点产生的气体更少。设计了一种新结构来强化这种孔效应,将活性铂纳米颗粒嵌入线性六方介孔二氧化硅和类螺旋立方MCM-48二氧化硅之间(mSiO/Pt/MCM-48)。这种催化剂能将聚烯烃选择性地解构为~C-C链烷烃,并且以超过缺乏这些综合特性的材料的速率(TOF = 4.2 ± 0.3 s⁻¹)裂解C-C键,同时产生可忽略不计的挥发性副产物,包括甲烷。与时间无关的产物分布与聚合物解构的连续机制一致。与从无孔催化剂获得的与时间和聚合物长度相关的产物不同,mSiO/Pt/MCM-48从不同分子量、组成和物理性质的聚烯烃(包括低密度聚乙烯、等规聚丙烯、超高分子量聚乙烯以及多种工业后聚烯烃的混合物)中产生以C为中心的蜡状烃高斯分布。粗粒度模拟表明,多孔核结构使链烷烃能够从活性铂位点扩散开,从而防止产生气体的二次反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验