Moretti Christian, Patil Vikas, Falter Christoph, Geissbühler Lukas, Patt Anthony, Steinfeld Aldo
ETH Zurich, Department of Environmental Systems Science, 8092 Zürich, Switzerland.
ETH Zurich, Department of Mechanical and Process Engineering, 8092 Zurich, Switzerland.
Sci Total Environ. 2023 Nov 25;901:166005. doi: 10.1016/j.scitotenv.2023.166005. Epub 2023 Aug 2.
This study analyzes the technical performance, costs and life-cycle greenhouse gas (GHG) emissions of the production of various fuels using air-captured water and CO, and concentrated solar energy as the source of high-temperature process heat. The solar thermochemical fuel production pathway utilizes a ceria-based redox cycle for splitting water and CO to syngas - a tailored mixture of H and CO - which in turn is further converted to liquid hydrocarbon fuels. The cycle is driven by concentrated solar heat and supplemented by a high-temperature thermal energy storage for round-the-clock continuous operation. The study examines three locations with high direct normal irradiation using a baseline heliostat field reflective area of 1 km for the production of six fuels, i.e. jet fuel and diesel via Fischer-Tropsch, methanol, gasoline via methanol, dimethyl ether, and hydrogen. Two scenarios are considered: near-term future by the year 2030 and long-term future beyond 2030. In the near-term future in Sierra Gorda (Chile), the minimum fuel selling price is estimated at around 76 €/GJ (2.5 €/L) for jet fuel and diesel, 65 €/GJ for methanol, gasoline (via methanol) and dimethyl ether (DME), and 42 €/GJ for hydrogen (excluding liquefaction). In the long-term future, with advancements in solar receiver, redox reactor, high-temperature heat recovery and direct air capture technologies, the industrial-scale plant could achieve a solar-to-fuel efficiency up to 13-19 %, depending on the target fuel, resulting in a minimum fuel selling price of 16-38 €/GJ (0.6-1.3 €/L) for jet fuel and diesel, and 14-32 €/GJ for methanol, gasoline, and DME, making these fuels synthesized from sunlight and air cost-competitive vis-à-vis e-fuels. To produce the same fuels in Tabernas (Spain) and Ouarzazate (Morocco) as in Sierra Gorda, the production cost would increase by 22-33 %. Greenhouse gas savings can be over 80 % already in the near-term future.
本研究分析了以空气捕获的水和二氧化碳以及聚光太阳能作为高温工艺热来源来生产各种燃料的技术性能、成本和生命周期温室气体(GHG)排放。太阳能热化学燃料生产途径利用基于二氧化铈的氧化还原循环将水和二氧化碳分解为合成气——氢气和一氧化碳的特定混合物——合成气进而进一步转化为液态烃燃料。该循环由聚光太阳能驱动,并辅以高温热能储存以实现全天候连续运行。本研究以1平方千米的定日镜场反射面积为基线,考察了三个直接法向辐照度高的地点,用于生产六种燃料,即通过费托合成法生产喷气燃料和柴油、甲醇、通过甲醇生产汽油、二甲醚以及氢气。考虑了两种情景:2030年的近期未来和2030年以后的长期未来。在智利戈尔达山的近期未来,喷气燃料和柴油的最低燃料销售价格估计约为76欧元/吉焦(2.5欧元/升),甲醇、汽油(通过甲醇)和二甲醚(DME)为65欧元/吉焦,氢气为42欧元/吉焦(不包括液化成本)。在长期未来,随着太阳能接收器、氧化还原反应器、高温热回收和直接空气捕获技术的进步,根据目标燃料不同,工业规模工厂的太阳能到燃料效率可达13% - 至19%,喷气燃料和柴油的最低燃料销售价格为16 - 38欧元/吉焦(0.6 - 1.3欧元/升),甲醇、汽油和DME为14 - 32欧元/吉焦,这使得这些由阳光和空气合成的燃料在与电子燃料相比时具有成本竞争力。要在西班牙的塔韦纳斯和摩洛哥的瓦尔扎扎特生产与戈尔达山相同的燃料,生产成本将增加22% - 33%。在近期未来,温室气体减排量就可超过80%。