Bauhaus Luftfahrt e.V., Willy-Messerschmitt-Strasse 1, 85521 Ottobrunn, Germany.
Environ Sci Technol. 2016 Jan 5;50(1):470-7. doi: 10.1021/acs.est.5b03515. Epub 2015 Dec 21.
Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.
太阳能热化学为利用集中太阳能将 H2O 和 CO2 高效转化为液体碳氢燃料提供了一种很有前途的选择。为了探索这种燃料生产途径的潜力,对其气候影响和经济性能进行了分析。经济和生态性能的关键驱动因素包括热化学能量转换效率、太阳辐照度水平、运行和维护以及燃料生产厂的初始投资。对于带有空气 CO2 捕获的太阳能塔式集中器的基准情况,估计喷气燃料的生产成本为 2.23 欧元/升,生命周期温室气体(LC GHG)排放量为 0.49 千克 CO2-当量/升。与从空气中捕获 CO2 相比,从天然气联合循环发电厂捕获 CO2 可将生产成本降低 15%,但导致 LC GHG 排放量高于传统喷气燃料。如果所有涉及的工艺步骤都采用有利的假设(30%的热化学能量转换效率、3000 kWh/(m²a)的太阳辐照度、低 CO2 和定日镜成本),则在接近零的 LC GHG 排放量下,喷气燃料的生产成本可达到 1.28 欧元/升。如果考虑氧气作为副产品的商业价值,生产成本可能会更低。