School of Systems Biology, George Mason University, Manassas, Virginia.
Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia.
Biophys J. 2023 Sep 5;122(17):3476-3488. doi: 10.1016/j.bpj.2023.07.024. Epub 2023 Aug 4.
Using all-atom replica-exchange molecular dynamics simulations, we mapped the mechanisms of binding of the nuclear localization signal (NLS) sequence from Venezuelan equine encephalitis virus (VEEV) capsid protein to importin-α (impα) transport protein. Our objective was to identify the VEEV NLS sequence fragment that confers native, experimentally resolved binding to impα as well as to study associated binding energetics and conformational ensembles. The two selected VEEV NLS peptide fragments, KKPK and KKPKKE, show strikingly different binding mechanisms. The minNLS peptide KKPK binds non-natively and nonspecifically by adopting five diverse conformational clusters with low similarity to the x-ray structure 3VE6 of NLS-impα complex. Despite the prevalence of non-native interactions, the minNLS peptide still largely binds to the impα major NLS binding site. In contrast, the coreNLS peptide KKPKKE binds specifically and natively, adopting a largely homogeneous binding ensemble with a dominant, highly native-like conformational cluster. The coreNLS peptide retains most of native binding interactions, including π-cation contacts and a tryptophan cage. While KKPK binding is governed by a complex multistate free energy landscape featuring transitions between multiple binding poses, the coreNLS peptide free energy map is simple, exhibiting a single dominant native-like bound basin. We argue that the origin of the coreNLS peptide binding specificity is several electrostatic interactions formed by the two C-terminal amino acids, Lys10 and Glu11, with impα. The coreNLS sequence is then sufficient for native binding, but none of the amino acids flanking minNLS, including Lys10 and Glu11, are strictly necessary for the native pose. Our analyses indicate that the VEEV coreNLS sequence is virtually unique among human and viral proteins interacting with impα making it a potential target for VEEV-specific inhibitors.
利用全原子置换分子动力学模拟,我们绘制了委内瑞拉马脑炎病毒(VEEV)衣壳蛋白核定位信号(NLS)序列与导入素-α(impα)转运蛋白结合的机制图谱。我们的目标是确定赋予 VEEV NLS 序列片段与 impα 天然、实验解析结合的片段,以及研究相关的结合能和构象集合。选择的两个 VEEV NLS 肽片段 KKPK 和 KKPKKE 显示出截然不同的结合机制。minNLS 肽 KKPK 通过采用五个不同的构象簇以非天然和非特异性方式结合,与 NLS-impα 复合物的 x 射线结构 3VE6 相似度低。尽管存在普遍的非天然相互作用,但 minNLS 肽仍然在很大程度上与 impα 的主要 NLS 结合位点结合。相比之下,核心 NLS 肽 KKPKKE 特异性和天然结合,采用具有主导、高度类似天然构象簇的大部分同质结合集合。核心 NLS 肽保留了大多数天然结合相互作用,包括π-阳离子接触和色氨酸笼。虽然 KKPK 结合受复杂的多态自由能景观控制,其中包括多个结合构象之间的转变,但核心 NLS 肽的自由能图谱很简单,表现出单一主导的天然样结合盆地。我们认为,核心 NLS 肽结合特异性的起源是两个 C 末端氨基酸 Lys10 和 Glu11 与 impα 形成的几个静电相互作用。然后,核心 NLS 序列足以实现天然结合,但 minNLS 侧翼的氨基酸,包括 Lys10 和 Glu11,都不是天然构象所必需的。我们的分析表明,VEEV 核心 NLS 序列在与 impα 相互作用的人类和病毒蛋白中几乎是独一无二的,使其成为 VEEV 特异性抑制剂的潜在靶标。