Abdoli Amirabbas, Yang Zhihan, Odeh-Ahmed Abdullah, Bednova Olga, Lemieux Bruno, Dawe Leanne, Ravel-Chapuis Aymeric, Lavigne Pierre, Zeytuni Natalie, Leyton Jeffrey V
Département de médecine nucléaire et radiobiologie, Faculté de médecine et sciences des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada.
Protein Sci. 2025 Sep;34(9):e70272. doi: 10.1002/pro.70272.
The nucleus, as the control center of the eukaryotic cell, is a prime target for therapeutic interventions due to its role in regulating genetic material. Importin-α is critical for successful nuclear import as it recognizes and binds to cargo proteins bearing a classical nuclear localization signal (NLS), which facilitates their transport from the cytoplasm into the nucleus. NLS tagging to 'actively' import therapeutics provides the most effective means of maximizing nuclear localization and therapeutic efficacy. However, traditional NLSs are highly cationic due to the recognition and binding requirements with importin-α. Because of their highly 'super-charged' nature, NLS-tagged therapeutics face significant challenges, including poor pharmacokinetics due to non-specific interactions. In this study, we engineered novel NLS tags with zero net charge to potentially overcome this limitation. Computational modeling and experimental validation revealed that these net-neutral NLSs bind to importin-α with similar modes and energies as their cationic counterpart. High-resolution structural determination and analysis by X-ray crystallography then confirmed their binding modes. Biophysical methods using circular dichroism, microscale thermophoresis, and cellular localization studies demonstrated that these NLSs maintain sufficiently stable complexes and acceptable binding to importin-α and are functional. Additionally, this study revealed that the minor NLS-binding site of importin-α, with its extensive cationic surface area, was particularly suited for interactions with the acidic residues of the net-neutral NLSs. This study provides a foundational understanding of NLS-importin interactions and presents net-neutral NLSs as viable candidates for next-generation NLS-therapeutic development and expands the scope of nuclear-targeting therapies.
细胞核作为真核细胞的控制中心,因其在调节遗传物质方面的作用,成为治疗干预的主要靶点。输入蛋白-α对于成功的核输入至关重要,因为它识别并结合带有经典核定位信号(NLS)的货物蛋白,从而促进它们从细胞质转运到细胞核。将NLS标记用于“主动”导入治疗药物,是使核定位和治疗效果最大化的最有效手段。然而,由于与输入蛋白-α的识别和结合要求,传统的NLS具有高度阳离子性。由于其高度“超带电”的性质,带有NLS标记的治疗药物面临重大挑战,包括由于非特异性相互作用导致的药代动力学不佳。在本研究中,我们设计了净电荷为零的新型NLS标签,以潜在地克服这一限制。计算建模和实验验证表明,这些净中性的NLS与它们的阳离子对应物以相似的模式和能量结合到输入蛋白-α上。随后通过X射线晶体学进行的高分辨率结构测定和分析证实了它们的结合模式。使用圆二色性、微量热泳和细胞定位研究的生物物理方法表明,这些NLS保持足够稳定的复合物,与输入蛋白-α具有可接受的结合并且具有功能。此外,本研究表明,输入蛋白-α较小的NLS结合位点,因其广泛的阳离子表面积,特别适合与净中性NLS的酸性残基相互作用。本研究提供了对NLS-输入蛋白相互作用的基础理解,并将净中性NLS作为下一代NLS治疗药物开发的可行候选物,扩大了核靶向治疗的范围。