Suppr超能文献

基于数据的急性呼吸衰竭幸存者临床结局预测的病房容量紧张指标分析。

A Data-Driven Analysis of Ward Capacity Strain Metrics That Predict Clinical Outcomes Among Survivors of Acute Respiratory Failure.

机构信息

Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Palliative and Advanced Illness Research (PAIR) Center, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

J Med Syst. 2023 Aug 5;47(1):83. doi: 10.1007/s10916-023-01978-5.

Abstract

Supply-demand mismatch of ward resources ("ward capacity strain") alters care and outcomes. Narrow strain definitions and heterogeneous populations limit strain literature. Evaluate the predictive utility of a large set of candidate strain variables for in-hospital mortality and discharge destination among acute respiratory failure (ARF) survivors. In a retrospective cohort of ARF survivors transferred from intensive care units (ICUs) to wards in five hospitals from 4/2017-12/2019, we applied 11 machine learning (ML) models to identify ward strain measures during the first 24 hours after transfer most predictive of outcomes. Measures spanned patient volume (census, admissions, discharges), staff workload (medications administered, off-ward transports, transfusions, isolation precautions, patients per respiratory therapist and nurse), and average patient acuity (Laboratory Acute Physiology Score version 2, ICU transfers) domains. The cohort included 5,052 visits in 43 wards. Median age was 65 years (IQR 56-73); 2,865 (57%) were male; and 2,865 (57%) were white. 770 (15%) patients died in the hospital or had hospice discharges, and 2,628 (61%) were discharged home and 964 (23%) to skilled nursing facilities (SNFs). Ward admissions, isolation precautions, and hospital admissions most consistently predicted in-hospital mortality across ML models. Patients per nurse most consistently predicted discharge to home and SNF, and medications administered predicted SNF discharge. In this hypothesis-generating analysis of candidate ward strain variables' prediction of outcomes among ARF survivors, several variables emerged as consistently predictive of key outcomes across ML models. These findings suggest targets for future inferential studies to elucidate mechanisms of ward strain's adverse effects.

摘要

病房资源的供需不匹配(“病房容量紧张”)改变了护理和结局。狭窄的紧张定义和异质人群限制了紧张文献。评估大量候选紧张变量对急性呼吸衰竭(ARF)幸存者住院死亡率和出院去向的预测效用。在一项回顾性队列研究中,我们将从 2017 年 4 月至 2019 年 12 月从 5 家医院的重症监护病房(ICU)转至病房的 ARF 幸存者中,应用 11 种机器学习(ML)模型来确定转移后 24 小时内最能预测结局的病房紧张度测量指标。这些指标涵盖了患者数量(患者人数、入院人数、出院人数)、工作人员工作量(药物管理、离床转运、输血、隔离预防措施、每名呼吸治疗师和护士的患者人数)和平均患者严重程度(实验室急性生理学评分第 2 版、转入 ICU)等领域。该队列包括 43 个病房的 5052 次就诊。患者中位年龄为 65 岁(IQR 56-73);2865 名(57%)为男性;2865 名(57%)为白人。770 名(15%)患者在医院死亡或接受临终关怀出院,2628 名(61%)出院回家,964 名(23%)出院至康复护理机构(SNF)。病房入院、隔离预防和医院入院在所有 ML 模型中最一致地预测院内死亡率。每名护士的患者数最一致地预测出院回家和 SNF,而药物管理则预测 SNF 出院。在这项针对 ARF 幸存者中候选病房紧张度变量对结局预测的假设生成分析中,有几个变量在所有 ML 模型中均一致地成为关键结局的预测因素。这些发现表明,未来的推断研究应针对病房紧张度不良影响的机制,确定目标。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验