Suppr超能文献

影像学生物标志物的应用尚未得到充分利用,但对于更致命的乳腺癌亚型来说,它们是高度预测性的预后因素。

Imaging biomarkers are underutilised but highly predictive prognostic factors for the more fatal breast cancer subtypes.

机构信息

Falun Central Hospital, Lasarettsvägen 10, 791 82 Falun, Sweden.

University of Turku, FI-20014 Turun Yliopisto, Finland.

出版信息

Eur J Radiol. 2023 Sep;166:111021. doi: 10.1016/j.ejrad.2023.111021. Epub 2023 Jul 31.

Abstract

PURPOSE

The development and refinement of breast imaging modalities offer a wealth of diagnostic information such as imaging biomarkers, which are primarily the mammographic appearance of the various breast cancer subtypes. These are readily available preoperatively at the time of diagnosis and can enhance the prognostic value of currently used molecular biomarkers. In this study, we investigated the relative utility of the molecular and imaging biomarkers, both jointly and independently, when predicting long-term patient outcome according to the site of tumour origin.

METHODS

We evaluated the association of imaging biomarkers and conventional molecular biomarkers, (ER, PR, HER-2, Ki67), separately and combined, with long-term patient outcome in all breast cancer cases having complete data on both imaging and molecular biomarkers (n = 2236) diagnosed in our Institute during the period 2008-2019. Large format histopathology technique was used to document intra- and intertumoural heterogeneity and select the appropriate foci for evaluating molecular biomarkers.

RESULTS

The breast cancer imaging biomarkers were strongly predictive of long-term patient outcome. The molecular biomarkers were predictive of outcome only for unifocal acinar adenocarcinoma of the breast (AAB), but less reliable in the multifocal AAB cases due to variability of molecular biomarkers in the individual tumour foci. In breast cancer of mesenchymal origin (BCMO), conventionally termed classic invasive lobular carcinoma, and in cancers originating from the major lactiferous ducts (ductal adenocarcinoma of the breast, DAB), the molecular biomarkers misleadingly indicated favourable prognosis, whereas the imaging biomarkers in BCMO and DAB reliably indicated the high risk of breast cancer death. Among the 2236 breast cancer cases, BCMO and DAB comprised 21% of the breast cancer cases, but accounted for 45% of the breast cancer deaths.

CONCLUSIONS

Integration of imaging biomarkers into the diagnostic workup of breast cancer yields a more precise, comprehensive and prognostically accurate diagnostic report. This is particularly necessary in multifocal AAB cases having intertumoural heterogeneity, in diffuse carcinomas (DAB and BCMO), and in cases with combined DAB and AAB. In such cases, the imaging biomarkers should be prioritised over molecular biomarkers in planning treatment because the latter fail to predict the severity of the disease. In combination with the use of the large section histopathology technique, imaging biomarkers help alleviate some of the current problems in breast cancer management, such as over- and under-assessment of disease extent, which carry the risk of overtreatment and undertreatment.

摘要

目的

乳腺影像学技术的发展和完善提供了丰富的诊断信息,如影像学生物标志物,主要是各种乳腺癌亚型的乳腺 X 线摄影表现。这些在诊断时术前即可获得,并可增强目前使用的分子生物标志物的预后价值。在这项研究中,我们根据肿瘤起源部位,研究了分子和影像学生物标志物的相对效用,包括它们单独和联合使用时对长期患者预后的影响。

方法

我们评估了影像学生物标志物和常规分子生物标志物(ER、PR、HER-2、Ki67)的联合和单独使用,与我们研究所 2008 年至 2019 年期间诊断的所有具有影像学和分子生物标志物完整数据的乳腺癌病例的长期患者结局之间的关系(n=2236)。采用大格式组织病理学技术记录肿瘤内和肿瘤间异质性,并选择适当的焦点来评估分子生物标志物。

结果

乳腺癌影像学生物标志物对长期患者结局具有很强的预测性。分子生物标志物仅可预测单发腺泡腺癌(AAB)的预后,但由于各肿瘤灶中分子生物标志物的变异性,多灶性 AAB 病例的预测结果不太可靠。在间叶来源的乳腺癌(BCMO),通常称为经典浸润性小叶癌,以及起源于主要乳导管的癌症(乳腺导管腺癌,DAB)中,分子生物标志物错误地表明预后良好,而 BCMO 和 DAB 中的影像学生物标志物可靠地表明了乳腺癌死亡的高风险。在 2236 例乳腺癌病例中,BCMO 和 DAB 占乳腺癌病例的 21%,但占乳腺癌死亡病例的 45%。

结论

将影像学生物标志物纳入乳腺癌的诊断工作中,可以提供更精确、全面和预后准确的诊断报告。在具有肿瘤间异质性的多灶性 AAB 病例、弥漫性癌(DAB 和 BCMO)以及 DAB 和 AAB 合并的病例中,这一点尤其必要。在这些情况下,在制定治疗计划时,应优先考虑影像学生物标志物而不是分子生物标志物,因为后者无法预测疾病的严重程度。与使用大切片组织病理学技术相结合,影像学生物标志物有助于缓解乳腺癌管理中的一些当前问题,例如对疾病范围的过度和不足评估,这会带来过度治疗和治疗不足的风险。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验