Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA.
Am J Transplant. 2023 Nov;23(11):1709-1722. doi: 10.1016/j.ajt.2023.07.023. Epub 2023 Aug 3.
The induction of operational immune tolerance is a major goal in beta-cell replacement strategies for the treatment of type 1 diabetes. Our group previously reported long-term efficacy via biomaterial-mediated programmed death ligand 1 (PD-L1) immunotherapy in islet allografts in nonautoimmune models. In this study, we evaluated autoimmune recurrence and allograft rejection during islet transplantation in spontaneous nonobese diabetic (NOD) mice. Graft survival and metabolic function were significantly prolonged over 60 days in recipients of syngeneic islets receiving the biomaterial-delivered immunotherapy, but not in control animals. The biomaterial-mediated PD-L1 immunotherapy resulted in delayed allograft rejection in diabetic NOD mice compared with controls. Discrimination between responders and nonresponders was attributed to the enriched presence of CD206+ program death 1+ macrophages and exhausted signatures in the cytotoxic T cell compartment in the local graft microenvironment. Notably, draining lymph nodes had similar remodeling in innate and adaptive immune cell populations. This work establishes that our biomaterial platform for PD-L1 delivery can modulate immune responses to transplanted islets in diabetic NOD mice and, thus, can provide a platform for the development of immunologic strategies to curb the allo- and autoimmune processes in beta-cell transplant recipients.
诱导免疫耐受是治疗 1 型糖尿病的胰岛细胞替代治疗的主要目标。我们的研究小组之前曾报道过,在非自身免疫模型中,通过生物材料介导的程序性死亡配体 1(PD-L1)免疫疗法,可使胰岛同种异体移植物长期有效。在这项研究中,我们在自发性非肥胖型糖尿病(NOD)小鼠中评估了胰岛移植期间的自身免疫复发和同种异体移植物排斥。在接受生物材料递送免疫疗法的同基因胰岛移植受体中,移植物存活和代谢功能显著延长超过 60 天,但在对照组中没有。与对照组相比,生物材料介导的 PD-L1 免疫疗法导致糖尿病 NOD 小鼠的同种异体移植物排斥延迟。区分应答者和无应答者归因于局部移植物微环境中 CD206+程序性死亡 1+巨噬细胞和耗竭的细胞毒性 T 细胞区室的丰富存在。值得注意的是,引流淋巴结中的固有和适应性免疫细胞群也发生了类似的重塑。这项工作确立了我们用于 PD-L1 传递的生物材料平台可以调节糖尿病 NOD 小鼠中移植胰岛的免疫反应,因此,可以为开发免疫策略提供平台,以抑制β细胞移植受者中的同种异体和自身免疫过程。