Zhou Huibin, Su Xinzhou, Duan Yuxiang, Song Hao, Zou Kaiheng, Zhang Runzhou, Song Haoqian, Hu Nanzhe, Tur Moshe, Willner Alan E
Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
School of Electrical Engineering, Tel Aviv University, Ramat Aviv, 69978, Israel.
Nat Commun. 2023 Aug 5;14(1):4701. doi: 10.1038/s41467-023-40381-z.
Atmospheric turbulence can cause critical problems in many applications. To effectively avoid or mitigate turbulence, knowledge of turbulence strength at various distances could be of immense value. Due to light-matter interaction, optical beams can probe longitudinal turbulence changes. Unfortunately, previous approaches tended to be limited to relatively short distances or large transceivers. Here, we explore turbulence probing utilizing multiple sequentially transmitted longitudinally structured beams. Each beam is composed of Bessel-Gaussian ([Formula: see text]) modes with different [Formula: see text] values such that a distance-varying beam width is produced, which results in a distance- and turbulence-dependent modal coupling to [Formula: see text] orders. Our simulation shows that this approach has relatively uniform and low errors (<0.3 dB) over a 10-km path with up to 30-dB turbulence-structure-constant variation. We experimentally demonstrate this approach for two emulated turbulence regions (~15-dB variation) with <0.8-dB errors. Compared to previous techniques, our approach can potentially probe longer distances or require smaller transceivers.
大气湍流会在许多应用中引发关键问题。为了有效避免或减轻湍流,了解不同距离处的湍流强度可能具有巨大价值。由于光与物质的相互作用,光束能够探测纵向湍流变化。不幸的是,先前的方法往往局限于相对较短的距离或大型收发器。在此,我们探索利用多个顺序发射的纵向结构化光束进行湍流探测。每个光束由具有不同[公式:见原文]值的贝塞尔 - 高斯([公式:见原文])模式组成,从而产生随距离变化的光束宽度,这导致与[公式:见原文]阶数相关的距离和湍流依赖的模态耦合。我们的模拟表明,在长达10公里的路径上,对于高达30分贝的湍流结构常数变化,这种方法具有相对均匀且低的误差(<0.3分贝)。我们通过实验证明了这种方法在两个模拟湍流区域(~15分贝变化)中误差<0.8分贝。与先前的技术相比,我们的方法有可能探测更长的距离或需要更小的收发器。