Suppr超能文献

不同医用口罩在 COVID-19 大流行期间对声学分和空气动力学嗓音评估的影响。

Effects of different medical masks on acoustic and aerodynamic voice assessment during the COVID-19 pandemic.

机构信息

Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Medicine (Baltimore). 2023 Aug 4;102(31):e34470. doi: 10.1097/MD.0000000000034470.

Abstract

The purpose of the study was to investigate the effect of the surgical masks and N95 masks on the acoustic and aerodynamic parameters of voice assessment during the coronavirus disease 2019 pandemic. The challenge of the study was to enable each inexperienced participant to perform a number of acoustic and aerodynamic voice assessment in a qualified and homogeneous manner without and with medical masks, and to minimize the individual differences. There were 32 healthy participants recruited in the study, including 16 males and 16 females. The acoustic parameters analyzed included fundamental frequency, standard deviation of fundamental frequency (fundamental frequency standard deviation), percentage of jitter (%), percentage of shimmer (%), glottal-to-noise excitation ratio (GNE), and the parameters of irregularity, noise and overall severity. The aerodynamic parameters included s time, z time, s/z ratio and maximum phonation time. When wearing surgical masks, the GNE ratio (P = .043) significantly increased, whereas noise (P = .039) and s time (P = .018) significantly decreased. When wearing N95 masks, the percentage of shimmer (P = .049), s time (P = .037) and s/z ratio (P = .048) significantly decrease. In general, performing voice assessment with a medical mask proved to be reliable for most of the acoustic and aerodynamic parameters. It is worth noting that the shimmer (%), could be slightly impacted when wearing N95 masks. Wearing surgical masks might slightly influence the measurement of noise and higher GNE ratio. The s/z ratio could be affected when wearing N95 masks. The contribution of the study is to explore acoustic and aerodynamic parameters that might be easily affected by wearing masks during the voice assessment, and provide references for clinical evaluation of voice disorders during the pandemic of coronavirus disease 2019.

摘要

本研究旨在探讨在 2019 年冠状病毒病大流行期间,外科口罩和 N95 口罩对嗓音评估的声学和空气动力学参数的影响。本研究的挑战在于使每个无经验的参与者能够在不戴和戴医用口罩的情况下以合格和同质的方式进行多次声学和空气动力学嗓音评估,并将个体差异降到最低。本研究共招募了 32 名健康参与者,包括 16 名男性和 16 名女性。分析的声学参数包括基频、基频标准差(基频标准差)、抖动百分比(%)、颤动百分比(%)、声门噪声激励比(GNE)以及不规则性、噪声和整体严重程度的参数。空气动力学参数包括 s 时间、z 时间、s/z 比和最长发声时间。戴外科口罩时,GNE 比值(P =.043)显著增加,而噪声(P =.039)和 s 时间(P =.018)显著降低。戴 N95 口罩时,颤动百分比(P =.049)、s 时间(P =.037)和 s/z 比(P =.048)显著降低。一般来说,使用医用口罩进行嗓音评估对于大多数声学和空气动力学参数来说是可靠的。值得注意的是,戴 N95 口罩时,颤动(%)可能会受到轻微影响。戴外科口罩可能会稍微影响噪声和更高的 GNE 比值的测量。戴 N95 口罩时,s/z 比可能会受到影响。本研究的贡献在于探讨在嗓音评估中可能容易受到戴口罩影响的声学和空气动力学参数,为 2019 年冠状病毒病大流行期间的嗓音障碍的临床评估提供参考。

相似文献

2
Effects of Medical Masks on Voice Assessment During the COVID-19 Pandemic.新冠疫情期间医用口罩对嗓音评估的影响。
J Voice. 2023 Sep;37(5):802.e25-802.e29. doi: 10.1016/j.jvoice.2021.04.028. Epub 2021 May 9.
6
Acoustic voice analysis in the COVID-19 era.新冠疫情时代的声学语音分析
Acta Otorhinolaryngol Ital. 2021 Feb;41(1):1-5. doi: 10.14639/0392-100X-N1002. Epub 2020 Nov 24.
8
Does the wearing of masks change voice and speech parameters?戴口罩是否会改变声音和言语参数?
Eur Arch Otorhinolaryngol. 2022 Apr;279(4):1701-1708. doi: 10.1007/s00405-021-07086-9. Epub 2021 Sep 22.

本文引用的文献

1
Effects of Medical Masks on Voice Quality in Patients With Voice Disorders.医用口罩对嗓音障碍患者嗓音质量的影响。
J Speech Lang Hear Res. 2022 May 11;65(5):1742-1750. doi: 10.1044/2022_JSLHR-21-00428. Epub 2022 Apr 1.
4
Voice Differences When Wearing and Not Wearing a Surgical Mask.佩戴和不佩戴外科口罩时的声音差异。
J Voice. 2023 May;37(3):467.e1-467.e7. doi: 10.1016/j.jvoice.2021.01.026. Epub 2021 Mar 10.
6
Acoustic voice analysis in the COVID-19 era.新冠疫情时代的声学语音分析
Acta Otorhinolaryngol Ital. 2021 Feb;41(1):1-5. doi: 10.14639/0392-100X-N1002. Epub 2020 Nov 24.
9
Effect of Wearing a Face Mask on Vocal Self-Perception during a Pandemic.疫情期间佩戴口罩对面部自我感知的影响。
J Voice. 2022 Nov;36(6):878.e1-878.e7. doi: 10.1016/j.jvoice.2020.09.006. Epub 2020 Oct 1.
10
Deep Bidirectional Classification Model for COVID-19 Disease Infected Patients.深度双向分类模型用于 COVID-19 疾病感染患者。
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jul-Aug;18(4):1234-1241. doi: 10.1109/TCBB.2020.3009859. Epub 2021 Aug 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验