Suppr超能文献

无泵平台实现 3D 打印管状组织的长期循环灌注。

Pump-Less Platform Enables Long-Term Recirculating Perfusion of 3D Printed Tubular Tissues.

机构信息

School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada.

Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada.

出版信息

Adv Healthc Mater. 2023 Oct;12(27):e2300423. doi: 10.1002/adhm.202300423. Epub 2023 Sep 19.

Abstract

The direction and pattern of fluid flow affect vascular structure and function, in which vessel-lining endothelial cells exhibit variable cellular morphologies and vessel remodeling by mechanosensing. To recapitulate this microenvironment, some approaches have been reported to successfully apply unidirectional flow on endothelial cells in organ-on-a-chip systems. However, these platforms encounter drawbacks such as the dependency on pumps or confinement to closed microfluidic channels. These constraints impede their synergy with advanced biofabrication techniques like 3D bioprinting, thereby curtailing the potential to introduce greater complexity into engineered tissues. Herein, a pumpless recirculating platform (UniPlate) that enables unidirectional media recirculation through 3D printed tubular tissues, is demonstrated.The device is made of polystyrene via injection molding in combination with 3D printed sacrifical gelatin templates. Tubular blood vessels with unidirectional perfusion are firstly engineered. Then the design is expanded to incorporate duo-recirculating flow for culturing vascularized renal proximal tubules with glucose reabsorption function. In addition to media recirculation, human monocyte recirculation in engineered blood vessels is also demonstrated for over 24 h, with minimal loss of cells, cell viability, and inflammatory activation. UniPlate can be a valuable tool to more precisely control the cellular microenvironment of organ-on-a-chip systems for drug discovery.

摘要

流体流动的方向和模式会影响血管结构和功能,其中血管内皮细胞通过机械感受表现出不同的细胞形态和血管重塑。为了再现这种微环境,一些方法已经被报道成功地将单向流应用于器官芯片系统中的内皮细胞。然而,这些平台存在一些缺点,例如依赖于泵或局限于封闭的微流道。这些限制阻碍了它们与先进的生物制造技术(如 3D 生物打印)的协同作用,从而限制了引入更复杂的工程组织的潜力。在这里,展示了一种无需泵的循环平台(UniPlate),该平台可通过 3D 打印管状组织实现单向介质循环。该设备由聚苯乙烯通过注塑成型与 3D 打印牺牲明胶模板结合而成。首先构建了具有单向灌注的管状血管。然后,该设计扩展为包含双循环流,以培养具有葡萄糖重吸收功能的血管化肾近端小管。除了介质循环外,还在工程化血管中演示了人类单核细胞循环超过 24 小时,细胞损失、细胞活力和炎症激活最小。UniPlate 可以成为一种有价值的工具,可更精确地控制器官芯片系统中的细胞微环境,用于药物发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/402d/11469154/ec79970ec32a/ADHM-12-2300423-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验