Division of Research, Kaiser Permanente Northern California, CA, Oakland, USA.
Department of Radiology, Kaiser Permanente Northern California, Vallejo, CA, USA.
Breast Cancer Res. 2023 Aug 6;25(1):92. doi: 10.1186/s13058-023-01685-6.
Breast density is strongly associated with breast cancer risk. Fully automated quantitative density assessment methods have recently been developed that could facilitate large-scale studies, although data on associations with long-term breast cancer risk are limited. We examined LIBRA assessments and breast cancer risk and compared results to prior assessments using Cumulus, an established computer-assisted method requiring manual thresholding.
We conducted a cohort study among 21,150 non-Hispanic white female participants of the Research Program in Genes, Environment and Health of Kaiser Permanente Northern California who were 40-74 years at enrollment, followed for up to 10 years, and had archived processed screening mammograms acquired on Hologic or General Electric full-field digital mammography (FFDM) machines and prior Cumulus density assessments available for analysis. Dense area (DA), non-dense area (NDA), and percent density (PD) were assessed using LIBRA software. Cox regression was used to estimate hazard ratios (HRs) for breast cancer associated with DA, NDA and PD modeled continuously in standard deviation (SD) increments, adjusting for age, mammogram year, body mass index, parity, first-degree family history of breast cancer, and menopausal hormone use. We also examined differences by machine type and breast view.
The adjusted HRs for breast cancer associated with each SD increment of DA, NDA and PD were 1.36 (95% confidence interval, 1.18-1.57), 0.85 (0.77-0.93) and 1.44 (1.26-1.66) for LIBRA and 1.44 (1.33-1.55), 0.81 (0.74-0.89) and 1.54 (1.34-1.77) for Cumulus, respectively. LIBRA results were generally similar by machine type and breast view, although associations were strongest for Hologic machines and mediolateral oblique views. Results were also similar during the first 2 years, 2-5 years and 5-10 years after the baseline mammogram.
Associations with breast cancer risk were generally similar for LIBRA and Cumulus density measures and were sustained for up to 10 years. These findings support the suitability of fully automated LIBRA assessments on processed FFDM images for large-scale research on breast density and cancer risk.
乳腺密度与乳腺癌风险密切相关。最近开发了完全自动化的定量密度评估方法,这可能有助于大规模研究,尽管与长期乳腺癌风险相关的数据有限。我们研究了 LIBRA 评估与乳腺癌风险的关系,并将结果与使用 Cumulus 的先前评估进行了比较,Cumulus 是一种需要手动阈值的成熟计算机辅助方法。
我们在 Kaiser Permanente 北加州的基因、环境和健康研究计划中进行了一项队列研究,该研究纳入了 21150 名非西班牙裔白人女性参与者,她们在入组时年龄为 40-74 岁,随访时间长达 10 年,并对归档的处理过的筛查乳房 X 光片进行了分析,这些乳房 X 光片是在 Hologic 或通用电气全数字乳房 X 光摄影(FFDM)机器上拍摄的,并可获得先前的 Cumulus 密度评估结果。使用 LIBRA 软件评估致密区(DA)、非致密区(NDA)和百分比密度(PD)。使用 Cox 回归估计与 DA、NDA 和 PD 相关的乳腺癌风险比(HR),DA、NDA 和 PD 以标准差(SD)增量的连续模型进行建模,调整年龄、乳房 X 光片拍摄年份、体重指数、产次、一级乳腺癌家族史和激素使用情况。我们还检查了机器类型和乳房视图的差异。
LIBRA 中与 DA、NDA 和 PD 的每个 SD 增量相关的调整后 HR 分别为 1.36(95%置信区间,1.18-1.57)、0.85(0.77-0.93)和 1.44(1.26-1.66),而 Cumulus 中的相应 HR 分别为 1.44(1.33-1.55)、0.81(0.74-0.89)和 1.54(1.34-1.77)。LIBRA 的结果通常因机器类型和乳房视图而异,尽管与 Hologic 机器和内外斜视图的相关性最强。基线乳房 X 光片后 2 年、2-5 年和 5-10 年的结果也相似。
LIBRA 和 Cumulus 密度测量与乳腺癌风险的关联通常相似,并且可以持续长达 10 年。这些发现支持在全数字 FFDM 图像上使用完全自动化的 LIBRA 评估进行大规模乳腺密度和癌症风险研究的适用性。