Microbiology Laboratory, Mayanei Hayeshua Medical Center, Bney Brak, Israel.
The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
Front Cell Infect Microbiol. 2023 Jul 21;13:1168530. doi: 10.3389/fcimb.2023.1168530. eCollection 2023.
GBS may cause a devastating disease in newborns. In early onset disease of the newborn the bacteria are acquired from the colonized mother during delivery. We characterized type VII secretion system (T7SS), exporting small proteins of the WXG100 superfamily, in group B Streptococci (GBS) isolates from pregnant colonized women and newborns with early onset disease (EOD) to better understand T7SS contribution to virulence in these different clinical scenarios.
GBS genomes [N=33, 17 EOD isolates (serotype III/ST17) and 16 colonizing isolates (12 serotype VI/ST1, one serotype VI/ST19, one serotype VI/ST6, and two serotype 3/ST19)] were analyzed for presence of T7SS genes and genes encoding WXG100 proteins. We also perform bioinformatic analysis. larvae were used to compare virulence between colonizing, EOD, and mutant EOD isolates. The EOD isolate number 118659 (III/ST17) was used for knocking out the essC gene encoding a membrane-bound ATPase, considered the driver of T7SS.
Most GBS T7SS loci encoded core component genes: essC, membrane-embedded proteins (essA; essB), modulators of T7SS activity (esaA; esaB; esaC) and effectors: [esxA (SAG1039); esxB (SAG1030)].Bioinformatic analysis indicated that based on sequence type (ST) the clinicalGBS isolates encode at least three distinct subtypes of T7SS machinery. In all ST1isolates we identified two copies of esxA gene (encoding putative WXG100proteins), when only 23.5% of the ST17 isolates harbored the esxA gene. Five ST17isolates encoded two copies of the essC gene. Orphaned WXG100 molecule(SAG0230), distinct from T7SS locus, were found in all tested strains, except inST17 strains where the locus was found in only 23.5% of the isolates. In ST6 andST19 isolates most of the structure T7SS genes were missing. EOD isolates demonstrated enhanced virulence in modelcompared to colonizing isolates. The 118659DessC strain was attenuated in itskilling ability, and the larvae were more effective in eradicating 118659DessC.
We demonstrated that T7SS plays a role during infection. Knocking out the essC gene, considered the driver of T7SS, decreased the virulence of ST17 responsible for EOD, causing them to be less virulent comparable to the virulence observed in colonizing isolates.
GBS 可能会导致新生儿发生毁灭性疾病。在新生儿早发性疾病中,细菌是在分娩过程中从定植的母亲体内获得的。我们对来自定植孕妇和早发性疾病(EOD)新生儿的 B 组链球菌(GBS)分离株中的 VII 型分泌系统(T7SS)进行了表征,该系统可输出 WXG100 超家族的小蛋白,以更好地了解 T7SS 在这些不同临床情况下对毒力的贡献。
分析了 33 个 GBS 基因组[N=33,17 个 EOD 分离株(血清型 III/ST17)和 16 个定植分离株(12 个血清型 VI/ST1,1 个血清型 VI/ST19,1 个血清型 VI/ST6 和 2 个血清型 3/ST19)]中 T7SS 基因和编码 WXG100 蛋白的基因的存在情况。我们还进行了生物信息学分析。幼虫被用来比较定植、EOD 和突变 EOD 分离株之间的毒力。EOD 分离株 118659(III/ST17)用于敲除编码膜结合 ATP 酶的 essC 基因,该基因被认为是 T7SS 的驱动基因。
大多数 GBS T7SS 基因座编码核心成分基因:essC、膜嵌入蛋白(essA;essB)、T7SS 活性调节剂(esaA;esaB;esaC)和效应物:[esxA(SAG1039);esxB(SAG1030)]。生物信息学分析表明,基于序列类型(ST),临床 GBS 分离株编码至少三种不同类型的 T7SS 机制。在所有 ST1 分离株中,我们都鉴定出了 esxA 基因的两个拷贝(编码假定的 WXG100 蛋白),而只有 23.5%的 ST17 分离株携带 esxA 基因。五个 ST17 分离株编码两个 essC 基因的拷贝。在所有测试菌株中都发现了孤儿 WXG100 分子(SAG0230),与 T7SS 基因座不同,除了 ST17 菌株中,该基因座仅在 23.5%的分离株中发现。在 ST6 和 ST19 分离株中,大多数结构 T7SS 基因缺失。EOD 分离株在模型中表现出增强的毒力与定植分离株相比。118659DessC 菌株在其杀伤能力上减弱,幼虫更有效地根除 118659DessC。
我们证明了 T7SS 在感染过程中发挥作用。敲除 essC 基因,被认为是 T7SS 的驱动基因,降低了负责 EOD 的 ST17 的毒力,使其毒力与定植分离株观察到的毒力相当。