Yeşil Tamer, Mutlu Adem, Siyahjani Gültekin Sirin, Günel Zeynep Gülay, Zafer Ceylan
Solar Energy Institute, Ege University, Izmir 35100, Turkey.
ACS Omega. 2023 Jul 20;8(30):27784-27793. doi: 10.1021/acsomega.3c04088. eCollection 2023 Aug 1.
Star-shaped triazatruxene derivative hole-transporting materials (HTMs), namely, 3,8,13-tris(4-(8a,9a-dihydro-9-carbazol-9-yl)phenyl)-5,10,15-trihexyl-10,15-dihydro-5-diindolo[3,2-a:3',2'-c]carbazole (TAT-TY1) and 3,8,13-tris(4-(8a,9a-dihydro-9-carbazol-9-yl)phenyl)-5,10,15-trihexyl-10,15-dihydro-5-diindolo[3,2-a:3',2'-c]carbazole (TAT-TY2), containing electron-rich triazatruxene cores and donor carbazole moieties, were synthesized and successfully used in triple-cation perovskite solar cells. All the HTMs were obtained from relatively inexpensive precursor materials using well-known synthesis procedures and uncomplicated purification steps. All the HTMs, including the 5,10,15-trihexyl-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (TAT-H) main core, had suitable highest occupied molecular orbitals (HOMOs) for perovskite (TAT-H: -5.15 eV, TAT-TY1: -5.17 eV, and TAT-TY2: -5.2 eV). Steady-state and time-resolved photoluminescence results revealed that hole transport from the valence band of the perovskite into the HOMO of the new triazatruxene derivatives was more efficient than with TAT-H. Furthermore, the substitution of -hexylcarbazole and 9-phenylcarbazole in triazatruxene altered the crystalline nature of the main core, resulting in a smooth and pinhole-free thin-film morphology. As a result, the hole mobilities of TAT-TY1 and TAT-TY2 were measured to be one order of magnitude higher than that of TAT-H. Finally, TAT-TY1 and TAT-TY2 achieved power conversion efficiencies of up to 17.5 and 16.3%, respectively, compared to the reference Spiro-OMeTAD. These results demonstrate that the new star-shaped triazatruxene derivative HTMs can be synthesized without using complicated synthesis strategies by controlling the intrinsic morphology of the TAT-H main core.
星形三氮杂蒽衍生物空穴传输材料(HTMs),即3,8,13-三(4-(8a,9a-二氢-9-咔唑-9-基)苯基)-5,10,15-三己基-10,15-二氢-5-二吲哚并[3,2-a:3',2'-c]咔唑(TAT-TY1)和3,8,13-三(4-(8a,9a-二氢-9-咔唑-9-基)苯基)-5,10,15-三己基-10,15-二氢-5-二吲哚并[3,2-a:3',2'-c]咔唑(TAT-TY2),含有富电子的三氮杂蒽核心和供体咔唑部分,已被合成并成功应用于三阳离子钙钛矿太阳能电池。所有的HTMs均由相对廉价的前体材料通过众所周知的合成程序和简单的纯化步骤获得。所有的HTMs,包括5,10,15-三己基-10,15-二氢-5H-二吲哚并[3,2-a:3',2'-c]咔唑(TAT-H)主核,对于钙钛矿都有合适的最高占据分子轨道(HOMOs)(TAT-H:-5.15 eV,TAT-TY1:-5.17 eV,TAT-TY2:-5.2 eV)。稳态和时间分辨光致发光结果表明,从钙钛矿的价带向新的三氮杂蒽衍生物的HOMO的空穴传输比TAT-H更有效。此外,三氮杂蒽中-己基咔唑和9-苯基咔唑的取代改变了主核的晶体性质,导致形成光滑且无针孔的薄膜形态。结果,测得TAT-TY1和TAT-TY2的空穴迁移率比TAT-H高一个数量级。最后,与参比物Spiro-OMeTAD相比,TAT-TY1和TAT-TY2分别实现了高达17.5%和16.3%的功率转换效率。这些结果表明,通过控制TAT-H主核的固有形态,可以在不使用复杂合成策略的情况下合成新的星形三氮杂蒽衍生物HTMs。