Ng Bernard, Tasaki Shinya, Greathouse Kelsey M, Walker Courtney K, Zhang Ada, Covitz Sydney, Cieslak Matt, Adamson Ashley B, Andrade Julia P, Poovey Emily H, Curtis Kendall A, Muhammad Hamad M, Seidlitz Jakob, Satterthwaite Ted, Bennett David A, Seyfried Nicholas T, Vogel Jacob, Gaiteri Chris, Herskowitz Jeremy H
bioRxiv. 2023 Jul 24:2023.07.20.549895. doi: 10.1101/2023.07.20.549895.
Neuroimaging is commonly used to infer human brain connectivity, but those measurements are far-removed from the molecular underpinnings at synapses. To uncover the molecular basis of human brain connectivity, we analyzed a unique cohort of 98 individuals who provided neuroimaging and genetic data contemporaneous with dendritic spine morphometric, proteomic, and gene expression data from the superior frontal and inferior temporal gyri. Through cellular contextualization of the molecular data with dendritic spine morphology, we identified hundreds of proteins related to synapses, energy metabolism, and RNA processing that explain between-individual differences in functional connectivity and structural covariation. By integrating data at the genetic, molecular, subcellular, and tissue levels, we bridged the divergent fields of molecular biology and neuroimaging to identify a molecular basis of brain connectivity.
ONE-SENTENCE SUMMARY: Dendritic spine morphometry and synaptic proteins unite the divergent fields of molecular biology and neuroimaging.
神经成像常用于推断人类大脑的连通性,但这些测量与突触处的分子基础相去甚远。为了揭示人类大脑连通性的分子基础,我们分析了一组独特的98名个体,他们提供了神经成像和基因数据,同时还有来自额上回和颞下回的树突棘形态计量学、蛋白质组学和基因表达数据。通过将分子数据与树突棘形态进行细胞层面的关联,我们鉴定出数百种与突触、能量代谢和RNA加工相关的蛋白质,这些蛋白质解释了个体间功能连通性和结构协变的差异。通过整合基因、分子、亚细胞和组织水平的数据,我们将分子生物学和神经成像这两个不同领域联系起来,以确定大脑连通性的分子基础。
树突棘形态计量学和突触蛋白将分子生物学和神经成像这两个不同领域联系起来。