Suppr超能文献

扩散泳促进生物分子凝聚物的相分离和运输。

Diffusiophoresis promotes phase separation and transport of biomolecular condensates.

作者信息

Doan Viet Sang, Alshareedah Ibraheem, Singh Anurag, Banerjee Priya R, Shin Sangwoo

机构信息

Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260.

Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260.

出版信息

Res Sq. 2023 Jul 27:rs.3.rs-3171749. doi: 10.21203/rs.3.rs-3171749/v1.

Abstract

The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart active motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with reentrant phase behavior, the gradient-induced active motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and active transport of biomolecular condensates.

摘要

活细胞的内部微环境是异质的,由众多具有独特生物化学性质的细胞器组成。其中包括生物分子凝聚物,它们是无膜的、相分离的区室,富含系统特异性蛋白质和核酸。细胞的异质性导致在化学、电荷、浓度、温度和压力方面存在多个时空梯度。这种热力学梯度可导致生物分子凝聚物形成和运输的非平衡驱动力。在此,我们报告离子梯度如何在中尺度上影响生物分子凝聚物的运输过程以及在微尺度上影响生物分子。利用微流控平台,我们证明离子浓度梯度的存在可通过扩散泳加速包括核酸和蛋白质在内的生物分子的运输。这种流体动力学运输过程允许生物分子局部富集,从而通过相分离促进生物分子凝聚物的位置特异性形成。离子梯度还赋予凝聚物主动运动性,使其能够沿梯度表现出增强的扩散。与折返相行为相结合,梯度诱导的主动运动性导致凝聚物的动态重新分布,最终延长其寿命。总之,我们的结果表明扩散泳是一种控制生物分子凝聚物形成和主动运输的非平衡热力学力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef17/10402192/f6b2f6906582/nihpp-rs3171749v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验