McBee Joseph C, Han Daniel Y, Liu Li, Ma Leah, Adjeroh Donald A, Xu Dong, Hu Gangqing
Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506, USA.
Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA.
medRxiv. 2023 Jul 27:2023.07.23.23292452. doi: 10.1101/2023.07.23.23292452.
ChatGPT showcases exceptional conversational capabilities and extensive cross-disciplinary knowledge. In addition, it possesses the ability to perform multiple roles within a single chat session. This unique multi-role-playing feature positions ChatGPT as a promising tool to explore interdisciplinary subjects.
The study intended to guide ChatGPT for interdisciplinary exploration through simulated panel discussions. As a proof-of-concept, we employed this method to evaluate the advantages and challenges of using chatbots in sports rehabilitation.
We proposed a model termed PanelGPT to explore ChatGPTs' knowledge graph on interdisciplinary topics through simulated panel discussions. Applied to "chatbots in sports rehabilitation", ChatGPT role-played both the moderator and panelists, which included a physiotherapist, psychologist, nutritionist, AI expert, and an athlete. We act as the audience posed questions to the panel, with ChatGPT acting as both the panelists for responses and the moderator for hosting the discussion. We performed the simulation using the ChatGPT-4 model and evaluated the responses with existing literature and human expertise.
Each simulation mimicked a real-life panel discussion: The moderator introduced the panel and posed opening/closing questions, to which all panelists responded. The experts engaged with each other to address inquiries from the audience, primarily from their respective fields of expertise. By tackling questions related to education, physiotherapy, physiology, nutrition, and ethical consideration, the discussion highlighted benefits such as 24/7 support, personalized advice, automated tracking, and reminders. It also emphasized the importance of user education and identified challenges such as limited interaction modes, inaccuracies in emotion-related advice, assurance on data privacy and security, transparency in data handling, and fairness in model training. The panelists reached a consensus that chatbots are designed to assist, not replace, human healthcare professionals in the rehabilitation process.
Compared to a typical conversation with ChatGPT, the multi-perspective approach of PanelGPT facilitates a comprehensive understanding of an interdisciplinary topic by integrating insights from experts with complementary knowledge. Beyond addressing the exemplified topic of chatbots in sports rehabilitation, the model can be adapted to tackle a wide array of interdisciplinary topics within educational, research, and healthcare settings.
ChatGPT展现出卓越的对话能力和广泛的跨学科知识。此外,它具备在单个聊天会话中扮演多个角色的能力。这种独特的多角色扮演功能使ChatGPT成为探索跨学科主题的有前景的工具。
本研究旨在通过模拟小组讨论来指导ChatGPT进行跨学科探索。作为概念验证,我们采用这种方法来评估在运动康复中使用聊天机器人的优势和挑战。
我们提出了一个名为PanelGPT的模型,通过模拟小组讨论来探索ChatGPT在跨学科主题上的知识图谱。应用于“运动康复中的聊天机器人”,ChatGPT同时扮演主持人和小组成员,其中包括物理治疗师、心理学家、营养师、人工智能专家和一名运动员。我们作为观众向小组提出问题,ChatGPT既作为回答问题的小组成员,又作为主持讨论的主持人。我们使用ChatGPT-4模型进行模拟,并根据现有文献和专业知识评估回答。
每次模拟都模仿了现实生活中的小组讨论:主持人介绍小组成员并提出开场/结束问题,所有小组成员都做出回应。专家们相互交流以回答观众的提问,主要是来自各自专业领域的问题。通过解决与教育、物理治疗、生理学、营养和伦理考量相关的问题,讨论突出了诸如全天候支持、个性化建议、自动跟踪和提醒等好处。它还强调了用户教育的重要性,并指出了一些挑战,如互动模式有限、情感相关建议不准确、数据隐私和安全保证、数据处理透明度以及模型训练公平性等。小组成员达成共识,即聊天机器人旨在在康复过程中协助而非取代人类医疗专业人员。
与与ChatGPT的典型对话相比,PanelGPT的多视角方法通过整合具有互补知识的专家见解,促进了对跨学科主题的全面理解。除了解决运动康复中聊天机器人这一示例主题外,该模型还可适用于解决教育、研究和医疗环境中的广泛跨学科主题。