Suppr超能文献

阿尔茨海默病APP小鼠模型的海马体表现出区域特异性组织软化,并伴有星形胶质细胞增生增加。

Hippocampus of the APP mouse model of Alzheimer's disease exhibits region-specific tissue softening concomitant with elevated astrogliosis.

作者信息

Hall Chloe M, Lasli Soufian, Serwinski Bianca, Djordjevic Boris, Sheridan Graham K, Moeendarbary Emad

机构信息

Department of Mechanical Engineering, University College London, London, United Kingdom.

School of Applied Sciences, University of Brighton, Brighton, United Kingdom.

出版信息

Front Aging Neurosci. 2023 Jul 20;15:1212212. doi: 10.3389/fnagi.2023.1212212. eCollection 2023.

Abstract

Widespread neurodegeneration, enlargement of cerebral ventricles, and atrophy of cortical and hippocampal brain structures are classic hallmarks of Alzheimer's disease (AD). Prominent macroscopic disturbances to the cytoarchitecture of the AD brain occur alongside changes in the mechanical properties of brain tissue, as reported in recent magnetic resonance elastography (MRE) measurements of human brain mechanics. Whilst MRE has many advantages, a significant shortcoming is its spatial resolution. Higher resolution "cellular scale" assessment of the mechanical alterations to brain regions involved in memory formation, such as the hippocampus, could provide fresh new insight into the etiology of AD. Characterization of brain tissue mechanics at the cellular length scale is the first stepping-stone to understanding how mechanosensitive neurons and glia are impacted by neurodegenerative disease-associated changes in their microenvironment. To provide insight into the microscale mechanics of aging brain tissue, we measured spatiotemporal changes in the mechanical properties of the hippocampus using high resolution atomic force microscopy (AFM) indentation tests on acute brain slices from young and aged wild-type mice and the APP mouse model. Several hippocampal regions in APP mice are significantly softer than age-matched wild-types, notably the dentate granule cell layer and the CA1 pyramidal cell layer. Interestingly, regional softening coincides with an increase in astrocyte reactivity, suggesting that amyloid pathology-mediated alterations to the mechanical properties of brain tissue may impact the function of mechanosensitive astrocytes. Our data also raise questions as to whether aberrant mechanotransduction signaling could impact the susceptibility of neurons to cellular stressors in their microenvironment.

摘要

广泛的神经退行性变、脑室扩大以及皮质和海马脑结构萎缩是阿尔茨海默病(AD)的典型特征。正如最近对人脑力学进行的磁共振弹性成像(MRE)测量所报道的那样,AD脑的细胞结构出现明显的宏观紊乱,同时脑组织的力学特性也发生了变化。虽然MRE有许多优点,但其空间分辨率是一个显著缺点。对参与记忆形成的脑区(如海马体)的机械改变进行更高分辨率的“细胞尺度”评估,可能会为AD的病因提供全新的见解。在细胞长度尺度上表征脑组织力学是理解机械敏感神经元和神经胶质细胞如何受到神经退行性疾病相关微环境变化影响的第一步。为了深入了解衰老脑组织的微观力学,我们使用高分辨率原子力显微镜(AFM)压痕测试,对来自年轻和老年野生型小鼠以及APP小鼠模型的急性脑切片进行了海马体力学特性的时空变化测量。APP小鼠的几个海马区明显比年龄匹配的野生型小鼠更软,特别是齿状颗粒细胞层和CA1锥体细胞层。有趣的是,区域软化与星形胶质细胞反应性增加同时出现,这表明淀粉样蛋白病理学介导的脑组织力学特性改变可能会影响机械敏感星形胶质细胞的功能。我们的数据还提出了一个问题,即异常的机械转导信号是否会影响神经元对其微环境中细胞应激源的易感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0052/10398960/317c6d524b77/fnagi-15-1212212-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验