Cornalba Federico, Fischer Julian
Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
Arch Ration Mech Anal. 2023;247(5):76. doi: 10.1007/s00205-023-01903-7. Epub 2023 Aug 4.
The Dean-Kawasaki equation-a strongly singular SPDE-is a basic equation of fluctuating hydrodynamics; it has been proposed in the physics literature to describe the fluctuations of the density of independent diffusing particles in the regime of large particle numbers . The singular nature of the Dean-Kawasaki equation presents a substantial challenge for both its analysis and its rigorous mathematical justification. Besides being non-renormalisable by the theory of regularity structures by Hairer et al., it has recently been shown to not even admit nontrivial martingale solutions. In the present work, we give a rigorous and fully quantitative justification of the Dean-Kawasaki equation by considering the natural regularisation provided by standard numerical discretisations: We show that structure-preserving discretisations of the Dean-Kawasaki equation may approximate the density fluctuations of non-interacting diffusing particles to arbitrary order in (in suitable weak metrics). In other words, the Dean-Kawasaki equation may be interpreted as a "recipe" for accurate and efficient numerical simulations of the density fluctuations of independent diffusing particles.
迪恩 - 川崎方程——一个强奇异的随机偏微分方程——是波动流体动力学的一个基本方程;它在物理学文献中被提出,用于描述大粒子数 regime 下独立扩散粒子密度的涨落。迪恩 - 川崎方程的奇异性质对其分析和严格的数学论证都构成了重大挑战。除了不能通过海勒等人的正则结构理论进行重整化外,最近还表明它甚至不存在非平凡的鞅解。在本工作中,我们通过考虑标准数值离散化提供的自然正则化,对迪恩 - 川崎方程给出了严格且完全定量的论证:我们表明,迪恩 - 川崎方程的保结构离散化可以在 (在合适的弱度量下)将非相互作用扩散粒子的密度涨落近似到任意阶。换句话说,迪恩 - 川崎方程可以被解释为独立扩散粒子密度涨落的准确且高效数值模拟的一种“方法”。