Suppr超能文献

基于Transformer 增强深度学习算法的膀胱镜下肿瘤检测

Tumor detection under cystoscopy with transformer-augmented deep learning algorithm.

机构信息

School of Control Science and Engineering, Shandong University, Jinan, People's Republic of China.

Department of Radiation Oncology, Stanford University, Stanford, CA, United States of America.

出版信息

Phys Med Biol. 2023 Aug 7;68(16). doi: 10.1088/1361-6560/ace499.

Abstract

Accurate tumor detection is critical in cystoscopy to improve bladder cancer resection and decrease recurrence. Advanced deep learning algorithms hold the potential to improve the performance of standard white-light cystoscopy (WLC) in a noninvasive and cost-effective fashion. The purpose of this work is to develop a cost-effective, transformer-augmented deep learning algorithm for accurate detection of bladder tumors in WLC and to assess its performance on archived patient data.'CystoNet-T', a deep learning-based bladder tumor detector, was developed with a transformer-augmented pyramidal CNN architecture to improve automated tumor detection of WLC. CystoNet-T incorporated the self-attention mechanism by attaching transformer encoder modules to the pyramidal layers of the feature pyramid network (FPN), and obtained multi-scale activation maps with global features aggregation. Features resulting from context augmentation served as the input to a region-based detector to produce tumor detection predictions. The training set was constructed by 510 WLC frames that were obtained from cystoscopy video sequences acquired from 54 patients. The test set was constructed based on 101 images obtained from WLC sequences of 13 patients.CystoNet-T was evaluated on the test set with 96.4 F1 and 91.4 AP (Average Precision). This result improved the benchmark of Faster R-CNN and YOLO by 7.3 points in F1 and 3.8 points in AP. The improvement is attributed to the strong ability of global attention of CystoNet-T and better feature learning of the pyramids architecture throughout the training. The model was found to be particularly effective in highlighting the foreground information for precise localization of the true positives while favorably avoiding false alarmsWe have developed a deep learning algorithm that accurately detects bladder tumors in WLC. Transformer-augmented AI framework promises to aid in clinical decision-making for improved bladder cancer diagnosis and therapeutic guidance.

摘要

准确的肿瘤检测对于提高膀胱癌切除率和降低复发率至关重要。先进的深度学习算法有可能以非侵入性和具有成本效益的方式提高标准白光膀胱镜检查(WLC)的性能。这项工作的目的是开发一种经济有效的、基于变换增强的深度学习算法,用于在 WLC 中准确检测膀胱肿瘤,并评估其在存档患者数据上的性能。'CystoNet-T'是一种基于深度学习的膀胱肿瘤探测器,它采用了一种具有变换增强的金字塔 CNN 架构,以提高 WLC 的自动肿瘤检测性能。CystoNet-T 通过将变换编码器模块附加到特征金字塔网络(FPN)的金字塔层,将自注意力机制纳入其中,并获得具有全局特征聚合的多尺度激活图。来自上下文增强的特征作为输入传递给基于区域的检测器,以产生肿瘤检测预测。训练集由从 54 名患者的膀胱镜视频序列中获得的 510 个 WLC 帧构建。测试集基于从 13 名患者的 WLC 序列中获得的 101 个图像构建。CystoNet-T 在测试集上的 F1 得分为 96.4,AP(平均精度)得分为 91.4。这一结果在 F1 中比 Faster R-CNN 和 YOLO 的基准提高了 7.3 个点,在 AP 中提高了 3.8 个点。改进归因于 CystoNet-T 的全局注意力的强大能力和在整个训练过程中金字塔架构的更好特征学习。该模型在突出前景信息以精确定位真阳性方面特别有效,同时有利地避免了假警报。我们已经开发了一种能够在 WLC 中准确检测膀胱肿瘤的深度学习算法。基于变换的 AI 框架有望帮助临床决策,以改善膀胱癌的诊断和治疗指导。

相似文献

2
Augmented Bladder Tumor Detection Using Deep Learning.深度学习增强的膀胱癌检测。
Eur Urol. 2019 Dec;76(6):714-718. doi: 10.1016/j.eururo.2019.08.032. Epub 2019 Sep 17.

本文引用的文献

4
Cancer statistics, 2022.癌症统计数据,2022 年。
CA Cancer J Clin. 2022 Jan;72(1):7-33. doi: 10.3322/caac.21708. Epub 2022 Jan 12.
7
Augmented Bladder Tumor Detection Using Deep Learning.深度学习增强的膀胱癌检测。
Eur Urol. 2019 Dec;76(6):714-718. doi: 10.1016/j.eururo.2019.08.032. Epub 2019 Sep 17.
9
Mask R-CNN.Mask R-CNN。
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):386-397. doi: 10.1109/TPAMI.2018.2844175. Epub 2018 Jun 5.
10
Computer-assisted cystoscopy diagnosis of bladder cancer.计算机辅助膀胱镜检查诊断膀胱癌。
Urol Oncol. 2018 Jan;36(1):8.e9-8.e15. doi: 10.1016/j.urolonc.2017.08.026. Epub 2017 Sep 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验