Department of Developmental BioEngineering, TechMed Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands.
Department of Pathology and Medical Biology, Section of Immunoendocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands.
Adv Healthc Mater. 2024 Oct;13(25):e2301552. doi: 10.1002/adhm.202301552. Epub 2023 Aug 13.
Transplantation of microencapsulated pancreatic cells is emerging as a promising therapy to replenish β-cell mass lost from auto-immune nature of type I diabetes mellitus (T1DM). This strategy intends to use micrometer-sized microgels to provide immunoprotection to transplanted cells to avoid chronic application of immunosuppression. Clinical application of encapsulation has remained elusive due to often limited production throughputs and body's immunological reactions to implanted materials. This article presents a high-throughput fabrication of monodisperse, non-immunogenic, non-degradable, immunoprotective, semi-permeable, enzymatically-crosslinkable polyethylene glycol-tyramine (PEG-TA) microgels for β-cell microencapsulation. Monodisperse β-cell laden microgels of ≈120 µm, with a shell thickness of 20 µm are produced using an outside-in crosslinking strategy. Microencapsulated β-cells rapidly self-assemble into islet-sized spheroids. Immunoprotection of the microencapsulated is demonstrated by inability of FITC-IgG antibodies to diffuse into cell-laden microgels and NK-cell inability to kill microencapsulated β-cells. Multiplexed ELISA analysis on live blood immune reactivity confirms limited immunogenicity. Microencapsulated MIN6β1 spheroids remain glucose responsive for 28 days in vitro, and able to restore normoglycemia 5 days post-implantation in diabetic mice without notable amounts of cell death. In short, PEG-TA microgels effectively protect implanted cells from the host's immune system while being viable and functional, validating this strategy for the treatment of T1DM.
胰岛细胞微囊化移植作为一种有前途的治疗方法,可补充 1 型糖尿病(T1DM)自身免疫引起的β细胞数量减少。该策略旨在使用微米级微凝胶为移植细胞提供免疫保护,以避免慢性应用免疫抑制剂。由于封装的生产通量通常有限,以及植入材料引起的身体免疫反应,封装的临床应用仍然难以实现。本文提出了一种高通量制备单分散、无免疫原性、不可降解、免疫保护性、半透性、酶交联的聚乙二醇-酪胺(PEG-TA)微凝胶,用于β细胞微囊化。使用外向交联策略,可制备 ≈120 μm 的载有β细胞的单分散微凝胶,其壳层厚度为 20 μm。载有细胞的微凝胶迅速自组装成胰岛大小的球体。微囊化β细胞的免疫保护作用表现为 FITC-IgG 抗体无法扩散到载细胞的微凝胶中,NK 细胞无法杀死微囊化的β细胞。活血免疫反应的多重 ELISA 分析证实了其免疫原性有限。微囊化 MIN6β1 球体在体外保持 28 天的葡萄糖反应性,并且能够在不引起明显细胞死亡的情况下,在糖尿病小鼠体内植入后 5 天恢复正常血糖水平。总之,PEG-TA 微凝胶可有效保护植入细胞免受宿主免疫系统的影响,同时保持细胞的活力和功能,为 T1DM 的治疗验证了这一策略。