Suppr超能文献

基于合成聚乙二醇的微流控胰岛包封减少了移植到高度血管化和可回收移植部位的移植物体积。

Synthetic poly(ethylene glycol)-based microfluidic islet encapsulation reduces graft volume for delivery to highly vascularized and retrievable transplant site.

机构信息

Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia.

Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.

出版信息

Am J Transplant. 2019 May;19(5):1315-1327. doi: 10.1111/ajt.15168. Epub 2018 Dec 5.

Abstract

Transplant of hydrogel-encapsulated allogeneic islets has been explored to reduce or eliminate the need for chronic systemic immunosuppression by creating a physical barrier that prevents direct antigen presentation. Although successful in rodents, translation of alginate microencapsulation to large animals and humans has been hindered by large capsule sizes (≥500 μm diameter) that result in suboptimal nutrient diffusion in the intraperitoneal space. We developed a microfluidic encapsulation system that generates synthetic poly(ethylene glycol)-based microgels with smaller diameters (310 ± 14 μm) that improve encapsulated islet insulin responsiveness over alginate capsules and allow transplant within vascularized tissue spaces, thereby reducing islet mass requirements and graft volumes. By delivering poly(ethylene glycol)-encapsulated islets to an isolated, retrievable, and highly vascularized site via a vasculogenic delivery vehicle, we demonstrate that a single pancreatic donor syngeneic islet mass exhibits improved long-term function over conventional alginate capsules and close integration with transplant site vasculature. In vivo tracking of bioluminescent allogeneic encapsulated islets in an autoimmune type 1 diabetes murine model showed enhanced cell survival over unencapsulated islets in the absence of chronic systemic immunosuppression. This method demonstrates a translatable alternative to intraperitoneal encapsulated islet transplant.

摘要

水凝胶包裹同种异体胰岛移植已被探索用于通过创建物理屏障来减少或消除对慢性全身免疫抑制的需求,该屏障可防止直接抗原呈递。尽管在啮齿动物中取得了成功,但藻酸盐微囊化向大动物和人类的转化受到大胶囊尺寸(≥500μm 直径)的阻碍,导致腹腔内的营养扩散不理想。我们开发了一种微流控封装系统,该系统可生成具有较小直径(310±14μm)的合成聚乙二醇(PEG)基微凝胶,从而提高了封装胰岛的胰岛素反应性,超过了藻酸盐胶囊,并允许在血管化组织空间内移植,从而减少胰岛质量需求和移植物体积。通过将聚乙二醇包裹的胰岛通过血管生成输送载体递送到一个隔离、可回收和高度血管化的部位,我们证明了单个胰腺供体同基因胰岛质量比传统藻酸盐胶囊具有更好的长期功能,并与移植部位的血管紧密整合。在自身免疫 1 型糖尿病小鼠模型中对生物发光的同种异体包裹胰岛进行体内示踪显示,在没有慢性全身免疫抑制的情况下,与未包裹的胰岛相比,细胞存活率提高。这种方法证明了一种可转化的替代方法,用于腹腔内包裹胰岛移植。

相似文献

引用本文的文献

1
4
Unlocking Transplant Tolerance with Biomaterials.利用生物材料实现移植耐受
Adv Healthc Mater. 2025 Feb;14(5):e2400965. doi: 10.1002/adhm.202400965. Epub 2024 Jul 3.
6
Encapsulation and immune protection for type 1 diabetes cell therapy.1型糖尿病细胞治疗的封装与免疫保护
Adv Drug Deliv Rev. 2024 Apr;207:115205. doi: 10.1016/j.addr.2024.115205. Epub 2024 Feb 13.
8
Translation of cell therapies to treat autoimmune disorders.细胞疗法治疗自身免疫性疾病的转化。
Adv Drug Deliv Rev. 2024 Feb;205:115161. doi: 10.1016/j.addr.2023.115161. Epub 2023 Dec 22.
10
3D Bioprinting for Pancreas Engineering/Manufacturing.用于胰腺工程/制造的3D生物打印
Polymers (Basel). 2022 Nov 25;14(23):5143. doi: 10.3390/polym14235143.

本文引用的文献

10
Standards of medical care in diabetes--2011.《糖尿病医疗护理标准——2011 年》
Diabetes Care. 2011 Jan;34 Suppl 1(Suppl 1):S11-61. doi: 10.2337/dc11-S011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验