Suppr超能文献

基于 AgNWs@ZIF 核壳纳米链的人工智能 SERS 早期口腔癌诊断。

Early-stage oral cancer diagnosis by artificial intelligence-based SERS using Ag NWs@ZIF core-shell nanochains.

机构信息

State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China.

School of Optoelectronics Engineering, Chongqing University, Chongqing 401331, China.

出版信息

Nanoscale. 2023 Aug 17;15(32):13466-13472. doi: 10.1039/d3nr02662k.

Abstract

Surface-enhanced Raman spectroscopy (SERS) has great potential in the early diagnosis of diseases by detecting the changes of volatile biomarkers in exhaled breath, because of its high sensitivity, rich chemical molecular fingerprint information, and immunity to humidity. Here, an accurate diagnosis of oral cancer (OC) is demonstrated using artificial intelligence (AI)-based SERS of exhaled breath in plasmonic-metal organic framework (MOF) nanoparticles. These plasmonic-MOF nanoparticles were prepared using a zeolitic imidazolate framework coated on Ag nanowires (Ag NWs@ZIF), which offers Raman enhancement from the plasmonic nanowires and gas enrichment from the ZIF shells. Then, the core-shell nanochains of Ag NWs@ZIF prepared with 0.5 mL Ag NWs were selected to capture gaseous methanethiol, which is a tumor biomarker, from the exhalation of OC patients. The substrate was used to collect a total of 400 SERS spectra of exhaled breath of simulated healthy people and simulated OC patients. The artificial neural network (ANN) model in the AI algorithm was trained with these SERS spectra and could classify them with an accuracy of 99%. Notably, the model predicted OC with an area under the curve (AUC) of 0.996 for the simulated OC breath samples. This work suggests the great potential of the combination of breath analysis and AI as a method for the early-stage diagnosis of oral cancer.

摘要

表面增强拉曼光谱(SERS)通过检测呼气中挥发性生物标志物的变化,在疾病的早期诊断中具有巨大潜力,因为它具有高灵敏度、丰富的化学分子指纹信息和对湿度的免疫力。在这里,通过基于人工智能(AI)的等离子体金属有机骨架(MOF)纳米粒子的呼气 SERS,实现了对口腔癌(OC)的准确诊断。这些等离子体-MOF 纳米粒子是使用沸石咪唑酯骨架涂覆在银纳米线上(Ag NWs@ZIF)制备的,它提供了来自等离子体纳米线的拉曼增强和来自 ZIF 壳的气体富集。然后,选择用 0.5 mL Ag NWs 制备的 Ag NWs@ZIF 核壳纳米链从 OC 患者的呼气中捕获气态甲硫醇,这是一种肿瘤生物标志物。该基底用于收集总共 400 个模拟健康人和模拟 OC 患者呼气的 SERS 光谱。人工智能算法中的人工神经网络(ANN)模型使用这些 SERS 光谱进行训练,可以将它们准确地分类为 99%。值得注意的是,该模型预测模拟 OC 呼吸样本的 OC 的曲线下面积(AUC)为 0.996。这项工作表明,呼吸分析和人工智能的结合具有作为口腔癌早期诊断方法的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验