Suppr超能文献

IGHV 等位基因相似聚类可提高适应性免疫受体谱系测序数据的基因型推断。

IGHV allele similarity clustering improves genotype inference from adaptive immune receptor repertoire sequencing data.

机构信息

Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel.

Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel.

出版信息

Nucleic Acids Res. 2023 Sep 8;51(16):e86. doi: 10.1093/nar/gkad603.

Abstract

In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region. Here, we propose an alternative naming scheme for the V alleles, as well as a novel method to infer individual genotypes. We demonstrate the strengths of the two by comparing their outcomes to other genotype inference methods. We validate the genotype approach with independent genomic long-read data. The naming scheme is compatible with current annotation tools and pipelines. Analysis results can be converted from the proposed naming scheme to the nomenclature determined by the International Union of Immunological Societies (IUIS). Both the naming scheme and the genotype procedure are implemented in a freely available R package (PIgLET https://bitbucket.org/yaarilab/piglet). To allow researchers to further explore the approach on real data and to adapt it for their uses, we also created an interactive website (https://yaarilab.github.io/IGHV_reference_book).

摘要

在适应性免疫受体库分析中,确定与每个 T 细胞和 B 细胞受体序列相关的胚系可变 (V) 等位基因是至关重要的一步。这个过程受到等位基因注释的高度影响。当受体库高度突变时,或者序列读取不能覆盖整个 V 区时,对齐序列、将它们分配给特定的胚系等位基因并推断个体基因型是具有挑战性的。在这里,我们提出了一种替代的 V 等位基因命名方案,以及一种推断个体基因型的新方法。我们通过将其结果与其他基因型推断方法进行比较,展示了这两种方法的优势。我们使用独立的基因组长读数据验证了基因型方法的有效性。命名方案与当前的注释工具和管道兼容。分析结果可以从建议的命名方案转换为国际免疫学会联盟 (IUIS) 确定的命名法。命名方案和基因型程序都在一个免费提供的 R 包 (PIgLET https://bitbucket.org/yaarilab/piglet) 中实现。为了允许研究人员在真实数据上进一步探索该方法并根据自己的用途进行调整,我们还创建了一个交互式网站 (https://yaarilab.github.io/IGHV_reference_book)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0548/10484671/e06654c71e2d/gkad603figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验