Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
School of Life Sciences, University of Warwick, Coventry, UK.
Commun Biol. 2024 Jul 31;7(1):922. doi: 10.1038/s42003-024-06561-3.
Designing effective monoclonal antibody (mAb) therapeutics faces a multi-parameter optimization challenge known as "developability", which reflects an antibody's ability to progress through development stages based on its physicochemical properties. While natural antibodies may provide valuable guidance for mAb selection, we lack a comprehensive understanding of natural developability parameter (DP) plasticity (redundancy, predictability, sensitivity) and how the DP landscapes of human-engineered and natural antibodies relate to one another. These gaps hinder fundamental developability profile cartography. To chart natural and engineered DP landscapes, we computed 40 sequence- and 46 structure-based DPs of over two million native and human-engineered single-chain antibody sequences. We find lower redundancy among structure-based compared to sequence-based DPs. Sequence DP sensitivity to single amino acid substitutions varied by antibody region and DP, and structure DP values varied across the conformational ensemble of antibody structures. We show that sequence DPs are more predictable than structure-based ones across different machine-learning tasks and embeddings, indicating a constrained sequence-based design space. Human-engineered antibodies localize within the developability and sequence landscapes of natural antibodies, suggesting that human-engineered antibodies explore mere subspaces of the natural one. Our work quantifies the plasticity of antibody developability, providing a fundamental resource for multi-parameter therapeutic mAb design.
设计有效的单克隆抗体(mAb)治疗药物面临着一个称为“可开发性”的多参数优化挑战,它反映了抗体基于其物理化学特性在开发阶段进展的能力。虽然天然抗体可能为 mAb 的选择提供有价值的指导,但我们缺乏对天然可开发性参数(DP)的可变性(冗余性、可预测性、敏感性)的全面理解,以及天然和工程化抗体的 DP 景观如何相互关联。这些差距阻碍了基本的可开发性概况制图。为了绘制天然和工程 DP 景观,我们计算了超过两百万个天然和人类工程单链抗体序列的 40 个序列和 46 个基于结构的 DP。我们发现基于结构的 DP 比基于序列的 DP 的冗余性更低。抗体区域和 DP 的单氨基酸取代对序列 DP 的敏感性不同,抗体结构构象集合中的结构 DP 值也不同。我们表明,基于序列的 DP 在不同的机器学习任务和嵌入中比基于结构的 DP 更具可预测性,这表明基于序列的设计空间受到限制。人类工程化的抗体定位于天然抗体的可开发性和序列景观内,这表明人类工程化的抗体仅仅探索了天然抗体的子空间。我们的工作量化了抗体可开发性的可变性,为多参数治疗性 mAb 设计提供了一个基本资源。