Department of Chemistry, New York University, 29 Washington Place, New York, NY, 10003, USA.
Angew Chem Int Ed Engl. 2023 Sep 25;62(39):e202308650. doi: 10.1002/anie.202308650. Epub 2023 Aug 18.
RNA, unlike DNA, folds into a multitude of secondary and tertiary structures. This structural diversity has impeded the development of ligands that can sequence-specifically target this biomolecule. We sought to develop ligands for double-stranded RNA (dsRNA) segments, which are ubiquitous in RNA tertiary structure. The major groove of double-stranded DNA is sequence-specifically recognized by a range of dimeric helical transcription factors, including the basic leucine zippers (bZIP) and basic helix-loop-helix (bHLH) proteins; however, such simple structural motifs are not prevalent in RNA-binding proteins. We interrogated the high-resolution structures of DNA and RNA to identify requirements for a helix fork motif to occupy dsRNA major grooves akin to dsDNA. Our analysis suggested that the rigidity and angle of approach of dimeric helices in bZIP/bHLH motifs are not ideal for the binding of dsRNA major grooves. This investigation revealed that the replacement of the leucine zipper motifs in bHLH proteins with synthetic crosslinkers would allow recognition of dsRNA. We show that a model bHLH DNA-binding motif does not bind dsRNA but can be reengineered as an RNA ligand. Based on this hypothesis, we rationally designed a miniature synthetic crosslinked helix fork (CHF) as a generalizable proteomimetic scaffold for targeting dsRNA. We evaluated several CHF constructs against a set of RNA and DNA hairpins to probe the specificity of the designed construct. Our studies reveal a new class of proteomimetics as an encodable platform for sequence-specific recognition of dsRNA.
RNA 与 DNA 不同,它可以折叠成多种二级和三级结构。这种结构多样性阻碍了能够特异性靶向这种生物分子的配体的发展。我们试图开发双链 RNA (dsRNA) 片段的配体,这些片段在 RNA 三级结构中普遍存在。双链 DNA 的大沟被一系列二聚体螺旋转录因子特异性识别,包括碱性亮氨酸拉链(bZIP)和碱性螺旋-环-螺旋(bHLH)蛋白;然而,这种简单的结构模体在 RNA 结合蛋白中并不常见。我们研究了 DNA 和 RNA 的高分辨率结构,以确定螺旋叉结构基序占据类似于 dsDNA 的 dsRNA 大沟的要求。我们的分析表明,bZIP/bHLH 基序中二聚体螺旋的刚性和接近角度对于 dsRNA 大沟的结合不理想。这项研究表明,用合成交联剂替代 bHLH 蛋白中的亮氨酸拉链基序将允许识别 dsRNA。我们表明,模型 bHLH DNA 结合基序不结合 dsRNA,但可以被重新设计为 RNA 配体。基于这一假设,我们合理设计了一个微型合成交联螺旋叉 (CHF),作为一种可推广的模拟蛋白质支架,用于靶向 dsRNA。我们评估了几种 CHF 结构针对一组 RNA 和 DNA 发夹,以探测设计结构的特异性。我们的研究揭示了一类新的蛋白质模拟物作为 dsRNA 序列特异性识别的可编码平台。