IEEE Trans Med Imaging. 2023 Dec;42(12):3702-3714. doi: 10.1109/TMI.2023.3302872. Epub 2023 Nov 30.
Magnetic resonance fingerprinting (MRF) can rapidly perform simultaneous imaging of multiple tissue parameters. However, the rapid acquisition schemes used in MRF inevitably introduce aliasing artifacts in the recovered tissue fingerprints, reducing the accuracy of the predicted parameter maps. Current regularized reconstruction methods are based on iterative procedures which are usually time-consuming. In addition, most of the current deep learning-based methods for MRF often lack interpretability owing to the black-box nature, and most deep learning-based methods are not applicable for non-Cartesian scenarios, which limits the practical applications. In this paper, we propose a joint reconstruction model incorporating MRF-physics prior and the data correlation constraint for non-Cartesian MRF reconstruction. To avoid time-consuming iterative procedures, we unroll the reconstruction model into a deep neural network. Specifically, we propose a learned CANDECOMP/PARAFAC (CP) decomposition module to exploit the tensor low-rank priors of high-dimensional MRF data, which avoids computationally burdensome singular value decomposition. Inspired by the MRF-physics, we also propose a Bloch response manifold module to learn the mapping between reconstructed MRF data and the multiple parameter maps. Numerical experiments show that the proposed network can reconstruct high-quality MRF data and multiple parameter maps within significantly reduced computational time.
磁共振指纹成像(MRF)可以快速同时对多种组织参数进行成像。然而,MRF 中使用的快速采集方案不可避免地会在恢复的组织指纹中引入混叠伪影,从而降低预测参数图的准确性。目前的正则化重建方法基于迭代过程,通常很耗时。此外,由于黑盒性质,当前大多数基于深度学习的 MRF 方法往往缺乏可解释性,并且大多数基于深度学习的方法不适用于非笛卡尔场景,这限制了实际应用。在本文中,我们提出了一种联合重建模型,该模型结合了 MRF 物理先验和非笛卡尔 MRF 重建的数据相关性约束。为了避免耗时的迭代过程,我们将重建模型展开为一个深度神经网络。具体来说,我们提出了一个学习的 CANDECOMP/PARAFAC(CP)分解模块,以利用高维 MRF 数据的张量低秩先验,从而避免计算量大的奇异值分解。受 MRF 物理的启发,我们还提出了 Bloch 响应流形模块,以学习重建的 MRF 数据与多个参数图之间的映射。数值实验表明,所提出的网络可以在大大减少计算时间的情况下重建高质量的 MRF 数据和多个参数图。