Suppr超能文献

基于无校准局部低秩张量约束的加速笛卡尔心脏T2映射

Accelerated Cartesian cardiac T2 mapping based on a calibrationless locally low-rank tensor constraint.

作者信息

Gao Juan, Gong Yiwen, Tang Xin, Chen Haiyang, Chen Zhuo, Shen Yiwen, Zhou Zhongjie, Emu Yixin, Aburas Ahmed, Jin Wei, Hua Sha, Hu Chenxi

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Quant Imaging Med Surg. 2024 Oct 1;14(10):7654-7670. doi: 10.21037/qims-24-740. Epub 2024 Sep 26.

Abstract

BACKGROUND

Cardiac T2 mapping is a valuable tool for diagnosing myocardial edema, inflammation, and infiltration, yet its spatial resolution is limited by the single-shot balanced steady-state free precession acquisition and duration of the cardiac quiescent period, which may reduce sensitivity in detecting focal lesions in the myocardium. To improve spatial resolution without extending the acquisition window, this study examined a novel accelerated Cartesian cardiac T2 mapping technique.

METHODS

We introduce a novel improved-resolution cardiac T2 mapping approach leveraging a calibrationless space-contrast-coil locally low-rank tensor (SCC-LLRT)-constrained reconstruction algorithm in conjunction with Cartesian undersampling trajectory. The method was validated with phantom imaging and imaging that involved 13 healthy participants and 20 patients. The SCC-LLRT algorithm was compared with a conventional locally low-rank (LLR)-constrained algorithm and a nonlinear inversion (NLINV) reconstruction algorithm. The improved-resolution T2 mapping (1.4 mm × 1.4 mm) was compared globally and regionally with the regular-resolution T2 mapping (2.3 mm × 1.9 mm) according to the 16-segment model of the American Heart Association. The agreement between the improved-resolution and regular-resolution T2 mappings was evaluated by linear regression and Bland-Altman analyses. Image quality was scored by two experienced reviewers on a five-point scale (1, worst; 5, best).

RESULTS

In healthy participants, SCC-LLRT significantly reduced artifacts (4.50±0.39) compared with LLR (2.31±0.60; P<0.001) and NLINV (3.65±0.56; P<0.01), suppressed noise (4.12±0.35) compared with NLINV (2.65±0.50; P<0.001), and improved the overall image quality (4.38±0.40) compared with LLR (2.54±0.41; P<0.001) and NLINV (3.04±0.50; P<0.001). Compared with the regular-resolution T2 mapping, the proposed method significantly improved the sharpness of myocardial boundaries (4.46±0.60 3.04±0.50; P<0.001) and the conspicuity of papillary muscles and fine structures (4.46±0.63 2.65±0.30; P<0.001). Myocardial T2 values obtained with the proposed method correlated significantly with those from regular-resolution T2 mapping in both healthy participants (r=0.79; P<0.01) and patients (r=0.94; P<0.001).

CONCLUSIONS

The proposed SCC-LLRT-constrained reconstruction algorithm in conjunction with Cartesian undersampling pattern achieved improved-resolution cardiac T2 mapping of comparable accuracy, precision, and scan-rescan reproducibility compared with the regular-resolution T2 mapping. The higher resolution improved the sharpness of myocardial borders and the conspicuity of image fine details, which may increase diagnostic confidence in cardiac T2 mapping for detecting small lesions.

摘要

背景

心脏T2 mapping是诊断心肌水肿、炎症和浸润的一种有价值的工具,但其空间分辨率受单次激发平衡稳态自由进动采集和心脏静止期持续时间的限制,这可能会降低检测心肌局灶性病变的敏感性。为了在不延长采集窗口的情况下提高空间分辨率,本研究考察了一种新型的加速笛卡尔心脏T2 mapping技术。

方法

我们引入了一种新型的高分辨率心脏T2 mapping方法,该方法利用一种无校准的空间对比线圈局部低秩张量(SCC-LLRT)约束重建算法结合笛卡尔欠采样轨迹。该方法通过体模成像以及纳入13名健康参与者和20名患者的成像进行了验证。将SCC-LLRT算法与传统的局部低秩(LLR)约束算法和非线性反演(NLINV)重建算法进行了比较。根据美国心脏协会的16节段模型,将高分辨率T2 mapping(1.4 mm×1.4 mm)与常规分辨率T2 mapping(2.3 mm×1.9 mm)进行了整体和区域比较。通过线性回归和Bland-Altman分析评估了高分辨率和常规分辨率T2 mapping之间的一致性。由两名经验丰富的阅片者对图像质量进行五分制评分(1分,最差;5分,最佳)。

结果

在健康参与者中,与LLR(2.31±0.60;P<0.001)和NLINV(3.65±0.56;P<0.01)相比,SCC-LLRT显著减少了伪影(4.50±0.39),与NLINV(2.65±0.50;P<0.001)相比抑制了噪声(4.12±0.35),并且与LLR(2.54±0.41;P<0.001)和NLINV(3.04±0.50;P<0.001)相比提高了整体图像质量(4.38±0.40)。与常规分辨率T2 mapping相比,所提出的方法显著提高了心肌边界的清晰度(4.46±0.60对3.04±0.50;P<0.001)以及乳头肌和精细结构的显见度(4.46±0.63对2.65±0.30;P<0.001)。在所提出的方法中获得的心肌T2值在健康参与者(r=0.79;P<0.01)和患者(r=0.94;P<0.001)中均与常规分辨率T2 mapping获得的值显著相关。

结论

所提出的结合笛卡尔欠采样模式的SCC-LLRT约束重建算法实现了高分辨率心脏T2 mapping,与常规分辨率T2 mapping相比,具有相当的准确性、精密度和扫描-重扫可重复性。更高的分辨率提高了心肌边界的清晰度和图像精细细节的显见度,这可能会增加心脏T2 mapping检测小病变的诊断信心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9cf/11485370/a784ba793fdb/qims-14-10-7654-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验