Suppr超能文献

一种基于图形处理器的高帧率矢量多普勒成像实时去伪像框架。

A GPU-Based, Real-Time Dealiasing Framework for High-Frame-Rate Vector Doppler Imaging.

作者信息

Nahas Hassan, Ishii Takuro, Yiu Billy Y S, Yu Alfred C H

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Nov;70(11):1384-1400. doi: 10.1109/TUFFC.2023.3303349. Epub 2023 Nov 1.

Abstract

Vector Doppler is well regarded as a potential way of deriving flow vectors to intuitively visualize complex flow profiles, especially when it is implemented at high frame rates. However, this technique's performance is known to suffer from aliasing artifacts. There is a dire need to devise real-time dealiasing solutions for vector Doppler. In this article, we present a new methodological framework for achieving aliasing-resistant flow vector estimation at real-time throughput from precalculated Doppler frequencies. Our framework comprises a series of compute kernels that have synergized: 1) an extended least squares vector Doppler (ELS-VD) algorithm; 2) single-instruction, multiple-thread (SIMT) processing principles; and 3) implementation on a graphical processing unit (GPU). Results show that this new framework, when executed on an RTX-2080 GPU, can effectively generate aliasing-free flow vector maps using high-frame-rate imaging datasets acquired from multiple transmit-receive angle pairs in a carotid phantom imaging scenario. Over the entire cardiac cycle, the frame processing time for aliasing-resistant vector estimation was measured to be less than 16 ms, which corresponds to a minimum processing throughput of 62.5 frames/s. In a human femoral bifurcation imaging trial with fast flow (150 cm/s), our framework was found to be effective in resolving two-cycle aliasing artifacts at a minimum throughput of 53 frames/s. The framework's processing throughput was generally in the real-time range for practical combinations of ELS-VD algorithmic parameters. Overall, this work represents the first demonstration of real-time, GPU-based aliasing-resistant vector flow imaging using vector Doppler estimation principles.

摘要

矢量多普勒被广泛认为是一种获取血流矢量以直观显示复杂血流剖面图的潜在方法,尤其是在以高帧率实现时。然而,已知该技术的性能会受到混叠伪影的影响。迫切需要为矢量多普勒设计实时去混叠解决方案。在本文中,我们提出了一种新的方法框架,用于从预先计算的多普勒频率以实时吞吐量实现抗混叠血流矢量估计。我们的框架由一系列协同工作的计算内核组成:1)扩展最小二乘矢量多普勒(ELS-VD)算法;2)单指令多线程(SIMT)处理原则;3)在图形处理单元(GPU)上实现。结果表明,这个新框架在RTX-2080 GPU上执行时,可以使用在颈动脉体模成像场景中从多个发射-接收角度对获取的高帧率成像数据集有效地生成无混叠血流矢量图。在整个心动周期中,抗混叠矢量估计的帧处理时间测量值小于16毫秒,这对应于至少62.5帧/秒的处理吞吐量。在一项针对快速血流(150厘米/秒)的人体股动脉分叉成像试验中,我们的框架被发现能够以至少53帧/秒的吞吐量有效解决双周期混叠伪影。对于ELS-VD算法参数的实际组合,该框架的处理吞吐量通常处于实时范围内。总体而言,这项工作首次展示了使用矢量多普勒估计原理的基于GPU的实时抗混叠矢量血流成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验