School of Mathematical Sciences, Dalian University of Technology, Dalian, China.
Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America.
PLoS Comput Biol. 2023 Aug 7;19(8):e1011355. doi: 10.1371/journal.pcbi.1011355. eCollection 2023 Aug.
Undetected infections fuel the dissemination of many infectious agents. However, identification of unobserved infectious individuals remains challenging due to limited observations of infections and imperfect knowledge of key transmission parameters. Here, we use an ensemble Bayesian inference method to infer unobserved infections using partial observations. The ensemble inference method can represent uncertainty in model parameters and update model states using all ensemble members collectively. We perform extensive experiments in both model-generated and real-world networks in which individuals have differential but unknown transmission rates. The ensemble method outperforms several alternative approaches for a variety of network structures and observation rates, despite that the model is mis-specified. Additionally, the computational complexity of this algorithm scales almost linearly with the number of nodes in the network and the number of observations, respectively, exhibiting the potential to apply to large-scale networks. The inference method may support decision-making under uncertainty and be adapted for use for other dynamical models in networks.
未被发现的感染会助长许多传染病原体的传播。然而,由于对感染的观察有限,并且对关键传播参数的了解不完美,因此识别未被观察到的感染者仍然具有挑战性。在这里,我们使用集成贝叶斯推断方法来使用部分观察结果推断未观察到的感染。集成推断方法可以表示模型参数的不确定性,并使用所有集成成员共同更新模型状态。我们在模型生成和现实世界网络中进行了广泛的实验,其中个体具有不同但未知的传播率。尽管模型指定有误,但集成方法在各种网络结构和观察率下都优于几种替代方法。此外,该算法的计算复杂度分别与网络中的节点数和观察数几乎呈线性比例缩放,具有应用于大规模网络的潜力。该推断方法可以支持不确定性下的决策,并适用于网络中其他动态模型的使用。