Suppr超能文献

用于检测无症状病例的风险感知时间级联重建

Risk-aware temporal cascade reconstruction to detect asymptomatic cases.

作者信息

Jang Hankyu, Pai Shreyas, Adhikari Bijaya, Pemmaraju Sriram V

机构信息

Department of Computer Science, University of Iowa, Iowa City, 52242 IA USA.

Department of Computer Science, Aalto University, Espoo, Finland.

出版信息

Knowl Inf Syst. 2022;64(12):3373-3399. doi: 10.1007/s10115-022-01748-8. Epub 2022 Sep 15.

Abstract

This paper studies the problem of detecting in a temporal contact network in which multiple outbreaks have occurred. We show that the key to detecting asymptomatic cases well is taking into account both individual risk and the likelihood of disease-flow along edges. We consider both aspects by formulating the asymptomatic case detection problem as a (Directed PCST) problem. We present an approximation-preserving reduction from this problem to the problem and obtain scalable algorithms for the Directed PCST problem on instances with more than 1.5M edges obtained from both synthetic and fine-grained hospital data. On synthetic data, we demonstrate that our detection methods significantly outperform various baselines (with a gain of ). We apply our method to the infectious disease prediction task by using an additional feature set that captures exposure to detected asymptomatic cases and show that our method outperforms all baselines. We further use our method to detect infection sources ("patient zero") of outbreaks that outperform baselines. We also demonstrate that the solutions returned by our approach are clinically meaningful by presenting case studies.

摘要

本文研究了在已发生多次疫情爆发的时间接触网络中进行检测的问题。我们表明,有效检测无症状病例的关键在于同时考虑个体风险和沿边的疾病传播可能性。我们通过将无症状病例检测问题表述为一个(有向PCST)问题来兼顾这两个方面。我们提出了从该问题到 问题的近似保持归约,并针对从合成数据和细粒度医院数据获得的具有超过150万条边的实例,获得了有向PCST问题的可扩展算法。在合成数据上,我们证明了我们的检测方法显著优于各种基线方法(增益为 )。我们通过使用一个额外的特征集将我们的方法应用于传染病预测任务,该特征集捕获了与检测到的无症状病例的接触情况,并表明我们的方法优于所有基线方法。我们进一步使用我们的方法来检测疫情爆发的感染源(“零号病人”),其性能优于基线方法。我们还通过案例研究表明我们方法返回的解决方案具有临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac8f/9476452/1df64abbc559/10115_2022_1748_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验