Suppr超能文献

小鼠耳蜗中的 DNA 甲基化促进支持细胞的成熟,并导致毛细胞再生失败。

DNA methylation in the mouse cochlea promotes maturation of supporting cells and contributes to the failure of hair cell regeneration.

机构信息

Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at the University of Southern California, Los Angeles, CA 90033.

Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033.

出版信息

Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2300839120. doi: 10.1073/pnas.2300839120. Epub 2023 Aug 7.

Abstract

Mammalian hair cells do not functionally regenerate in adulthood but can regenerate at embryonic and neonatal stages in mice by direct transdifferentiation of neighboring supporting cells into new hair cells. Previous work showed loss of transdifferentiation potential of supporting cells is in part due to H3K4me1 enhancer decommissioning of the hair cell gene regulatory network during the first postnatal week. However, inhibiting this decommissioning only partially preserves transdifferentiation potential. Therefore, we explored other repressive epigenetic modifications that may be responsible for this loss of plasticity. We find supporting cells progressively accumulate DNA methylation at promoters of developmentally regulated hair cell genes. Specifically, DNA methylation overlaps with binding sites of Atoh1, a key transcription factor for hair cell fate. We further show that DNA hypermethylation replaces H3K27me3-mediated repression of hair cell genes in mature supporting cells, and is accompanied by progressive loss of chromatin accessibility, suggestive of facultative heterochromatin formation. Another subset of hair cell loci is hypermethylated in supporting cells, but not in hair cells. Ten-eleven translocation (TET) enzyme-mediated demethylation of these hypermethylated sites is necessary for neonatal supporting cells to transdifferentiate into hair cells. We also observe changes in chromatin accessibility of supporting cell subtypes at the single-cell level with increasing age: Gene programs promoting sensory epithelium development loses chromatin accessibility, in favor of gene programs that promote physiological maturation and function of the cochlea. We also find chromatin accessibility is partially recovered in a chronically deafened mouse model, which holds promise for future translational efforts in hearing restoration.

摘要

哺乳动物的毛细胞在成年后不能进行功能性再生,但在小鼠的胚胎和新生阶段,可以通过邻近的支持细胞直接转分化为新的毛细胞进行再生。以前的工作表明,支持细胞的转分化潜力丧失部分是由于 H3K4me1 增强子在出生后第一周内对毛细胞基因调控网络的失活。然而,抑制这种失活只能部分保留转分化潜力。因此,我们探索了其他可能导致这种可塑性丧失的抑制性表观遗传修饰。我们发现支持细胞在发育调节的毛细胞基因的启动子处逐渐积累 DNA 甲基化。具体来说,DNA 甲基化与 Atoh1 的结合位点重叠,Atoh1 是毛细胞命运的关键转录因子。我们进一步表明,在成熟的支持细胞中,DNA 超甲基化取代了 H3K27me3 介导的对毛细胞基因的抑制作用,并且伴随着染色质可及性的逐渐丧失,提示形成了有条件的异染色质。在支持细胞中,另一组毛细胞基因座也发生了超甲基化,但在毛细胞中没有。TET 酶介导的这些超甲基化位点的去甲基化对于新生支持细胞转分化为毛细胞是必要的。我们还在单细胞水平上观察到支持细胞亚型的染色质可及性随年龄增长而发生变化:促进感觉上皮发育的基因程序丧失了染色质可及性,有利于促进耳蜗生理成熟和功能的基因程序。我们还发现,在慢性耳聋的小鼠模型中,染色质可及性部分恢复,这为未来在听力恢复方面的转化研究提供了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b4c/10438394/9e5606716aa0/pnas.2300839120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验