Suppr超能文献

从中心线对脑动脉网络进行建模和六面体网格划分。

Modeling and hexahedral meshing of cerebral arterial networks from centerlines.

机构信息

CREATIS, Université Lyon1, CNRS UMR5220, INSERM U1206, INSA-Lyon, 69621 Villeurbanne, France; LIRIS, CNRS UMR 5205, F-69621, France; ELyTMaX IRL3757, CNRS, INSA Lyon, Centrale Lyon, Université Claude Bernard Lyon 1, Tohoku University, 980-8577, Sendai, Japan; Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.

CREATIS, Université Lyon1, CNRS UMR5220, INSERM U1206, INSA-Lyon, 69621 Villeurbanne, France; Institute of Fluid Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.

出版信息

Med Image Anal. 2023 Oct;89:102912. doi: 10.1016/j.media.2023.102912. Epub 2023 Jul 29.

Abstract

Computational fluid dynamics (CFD) simulation provides valuable information on blood flow from the vascular geometry. However, it requires extracting precise models of arteries from low-resolution medical images, which remains challenging. Centerline-based representation is widely used to model large vascular networks with small vessels, as it encodes both the geometric and topological information and facilitates manual editing. In this work, we propose an automatic method to generate a structured hexahedral mesh suitable for CFD directly from centerlines. We addressed both the modeling and meshing tasks. We proposed a vessel model based on penalized splines to overcome the limitations inherent to the centerline representation, such as noise and sparsity. The bifurcations are reconstructed using a parametric model based on the anatomy that we extended to planar n-furcations. Finally, we developed a method to produce a volume mesh with structured, hexahedral, and flow-oriented cells from the proposed vascular network model. The proposed method offers better robustness to the common defects of centerlines and increases the mesh quality compared to state-of-the-art methods. As it relies on centerlines alone, it can be applied to edit the vascular model effortlessly to study the impact of vascular geometry and topology on hemodynamics. We demonstrate the efficiency of our method by entirely meshing a dataset of 60 cerebral vascular networks. 92% of the vessels and 83% of the bifurcations were meshed without defects needing manual intervention, despite the challenging aspect of the input data. The source code is released publicly.

摘要

计算流体动力学 (CFD) 模拟提供了有关血管几何形状血流的有价值的信息。然而,它需要从低分辨率的医学图像中提取精确的动脉模型,这仍然具有挑战性。基于中心线的表示法被广泛用于对包含小血管的大血管网络进行建模,因为它既编码了几何和拓扑信息,又便于手动编辑。在这项工作中,我们提出了一种从中心线直接生成适合 CFD 的结构化六面体网格的自动方法。我们解决了建模和网格划分任务。我们提出了一种基于惩罚样条的血管模型,以克服中心线表示法固有的局限性,例如噪声和稀疏性。分叉使用基于解剖结构的参数模型进行重建,我们将其扩展到平面 n 分叉。最后,我们开发了一种从所提出的血管网络模型生成具有结构化、六面体和面向流动的细胞的体积网格的方法。与最先进的方法相比,所提出的方法对中心线的常见缺陷具有更好的鲁棒性,并提高了网格质量。由于它仅依赖于中心线,因此可以轻松应用于编辑血管模型,以研究血管几何形状和拓扑对血液动力学的影响。我们通过完全网格处理 60 个大脑血管网络数据集来证明我们方法的效率。尽管输入数据具有挑战性,但没有缺陷需要手动干预的情况下,92%的血管和 83%的分叉都被网格化了。我们的代码已经公开发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验