Zhang Fangzhou, Luo Jiamei, Chen Junliang, Luo Hongxia, Jiang Miaomiao, Yang Chenxi, Zhang Hui, Chen Jun, Dong Angang, Yang Jianping
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.
ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute (IPRI), Australian Institute of Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW 2522, Australia.
Angew Chem Int Ed Engl. 2023 Sep 18;62(38):e202310383. doi: 10.1002/anie.202310383. Epub 2023 Aug 16.
One-dimensional fiber architecture serves as an excellent catalyst support. The orderly arrangement of active materials on such a fiber substrate can enhance catalytic performance by exposing more active sites and facilitating mass diffusion; however, this remains a challenge. We developed an interfacial assembly strategy for the orderly distribution of metal nanocrystals on different fiber substrates to optimize their electrocatalytic performance. Using electrochemical nitrate reduction reaction (NO RR) as a representative reaction, the iron-based nanofibers (Fe/NFs) assembly structure achieved an excellent nitrate removal capacity of 2317 mg N/g Fe and N selectivity up to 97.2 %. This strategy could promote the rational design and synthesis of fiber-based electrocatalysts.
一维纤维结构是一种优异的催化剂载体。活性材料在这种纤维基底上的有序排列可以通过暴露出更多活性位点并促进质量扩散来提高催化性能;然而,这仍然是一个挑战。我们开发了一种界面组装策略,用于使金属纳米晶体在不同纤维基底上有序分布,以优化其电催化性能。以电化学硝酸盐还原反应(NO₃RR)作为代表性反应,铁基纳米纤维(Fe/NFs)组装结构实现了2317 mg N/g Fe的优异硝酸盐去除能力以及高达97.2%的N选择性。该策略可促进基于纤维的电催化剂的合理设计与合成。