Suppr超能文献

用于电化学硝酸盐还原制氨的碳基催化剂:设计策略与机理洞察

Carbon-Based Catalysts for Electrochemical Nitrate Reduction to Ammonia: Design Strategies and Mechanistic Insights.

作者信息

Chen Qunyu, Deng Liuyang, Zhang Jinrui, Zhang Ying, Zhang Lei, Lu Shun, Wang Yanwei

机构信息

School of Chemical Engineering, Xuzhou College of Industrial Technology, Xuzhou 221140, China.

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Chongqing 400714, China.

出版信息

Materials (Basel). 2025 Jun 25;18(13):3019. doi: 10.3390/ma18133019.

Abstract

The electrochemical reduction of nitrate to ammonia offers a promising solution for both alleviating nitrate pollution in wastewater and providing a sustainable ammonia source for agriculture use. This review focuses on the role of carbon-based catalysts in electrochemical nitrate reduction to ammonia, emphasizing their potential in addressing environmental pollution and supporting sustainable ammonia production. Carbon materials, known for their abundance, affordability, and eco-friendly properties, are central to this process. The review highlights key strategies for enhancing catalytic performance, including heteroatom doping, the development of porous structures, and the integration of metal/metal oxide nanoparticles. Additionally, it addresses significant challenges such as weak nitrate adsorption, slow reaction kinetics, and competition with the hydrogen evolution reaction. Through the integration of advanced material design, mechanistic insights, and innovative engineering strategies, this review provides valuable guidance for the future design of carbon-based catalysts, paving the way for significant advancements in both nitrate removal and sustainable ammonia synthesis.

摘要

将硝酸盐电化学还原为氨,为缓解废水中的硝酸盐污染以及为农业提供可持续的氨源提供了一个很有前景的解决方案。本综述聚焦于碳基催化剂在硝酸盐电化学还原制氨中的作用,强调其在解决环境污染和支持可持续氨生产方面的潜力。碳材料以其丰富性、经济性和环保特性而闻名,是这一过程的核心。该综述突出了提高催化性能的关键策略,包括杂原子掺杂、多孔结构的开发以及金属/金属氧化物纳米颗粒的整合。此外,它还探讨了诸如硝酸盐吸附弱、反应动力学缓慢以及与析氢反应竞争等重大挑战。通过整合先进的材料设计、机理见解和创新的工程策略,本综述为未来碳基催化剂的设计提供了有价值的指导,为硝酸盐去除和可持续氨合成的重大进展铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9367/12251204/3bc1359a1423/materials-18-03019-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验