Suppr超能文献

基于机器学习的未知原发癌种的遗传学分类和治疗反应预测。

Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary.

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.

出版信息

Nat Med. 2023 Aug;29(8):2057-2067. doi: 10.1038/s41591-023-02482-6. Epub 2023 Aug 7.

Abstract

Cancer of unknown primary (CUP) is a type of cancer that cannot be traced back to its primary site and accounts for 3-5% of all cancers. Established targeted therapies are lacking for CUP, leading to generally poor outcomes. We developed OncoNPC, a machine-learning classifier trained on targeted next-generation sequencing (NGS) data from 36,445 tumors across 22 cancer types from three institutions. Oncology NGS-based primary cancer-type classifier (OncoNPC) achieved a weighted F1 score of 0.942 for high confidence predictions ([Formula: see text]) on held-out tumor samples, which made up 65.2% of all the held-out samples. When applied to 971 CUP tumors collected at the Dana-Farber Cancer Institute, OncoNPC predicted primary cancer types with high confidence in 41.2% of the tumors. OncoNPC also identified CUP subgroups with significantly higher polygenic germline risk for the predicted cancer types and with significantly different survival outcomes. Notably, patients with CUP who received first palliative intent treatments concordant with their OncoNPC-predicted cancers had significantly better outcomes (hazard ratio (HR) = 0.348; 95% confidence interval (CI) = 0.210-0.570; P = [Formula: see text]). Furthermore, OncoNPC enabled a 2.2-fold increase in patients with CUP who could have received genomically guided therapies. OncoNPC thus provides evidence of distinct CUP subgroups and offers the potential for clinical decision support for managing patients with CUP.

摘要

原发灶不明癌(CUP)是一种无法追溯到其原发部位的癌症,占所有癌症的 3-5%。CUP 缺乏已确立的靶向治疗方法,导致总体预后较差。我们开发了 OncoNPC,这是一种基于机器学习的分类器,针对来自三个机构的 22 种癌症类型的 36445 个肿瘤的靶向下一代测序(NGS)数据进行训练。OncoNPC 在独立肿瘤样本上实现了高置信度预测的加权 F1 得分为 0.942([公式:见文本]),这些样本占所有独立样本的 65.2%。当应用于在 Dana-Farber 癌症研究所收集的 971 例 CUP 肿瘤时,OncoNPC 以高置信度预测了 41.2%的肿瘤的原发癌症类型。OncoNPC 还确定了 CUP 亚组,这些亚组的预测癌症类型具有更高的多基因种系风险,且具有显著不同的生存结果。值得注意的是,接受与 OncoNPC 预测癌症类型一致的首次姑息性意向治疗的 CUP 患者的结局明显更好(风险比(HR)=0.348;95%置信区间(CI)=0.210-0.570;P=[公式:见文本])。此外,OncoNPC 使能够接受基于基因组指导治疗的 CUP 患者数量增加了 2.2 倍。因此,OncoNPC 提供了不同 CUP 亚组的证据,并为管理 CUP 患者提供了临床决策支持的潜力。

相似文献

9
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

引用本文的文献

本文引用的文献

2
Developmental Deconvolution for Classification of Cancer Origin.癌症起源分类的发育去卷积
Cancer Discov. 2022 Nov 2;12(11):2566-2585. doi: 10.1158/2159-8290.CD-21-1443.
9
KRAS mutation in pancreatic cancer.胰腺癌中的 KRAS 突变。
Semin Oncol. 2021 Feb;48(1):10-18. doi: 10.1053/j.seminoncol.2021.02.003. Epub 2021 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验