Suppr超能文献

抗抑郁药治疗选择的药物基因组学检测:经验教训和前进路线。

Pharmacogenomic testing for antidepressant treatment selection: lessons learned and roadmap forward.

机构信息

Department of Psychiatry & Psychology, Mayo Clinic, Mayo Clinic Alix School of Medicine, Rochester, MN, USA.

Department of Psychiatry & Behavioral Sciences, University of Texas at Austin Dell Medical School, Austin, TX, USA.

出版信息

Neuropsychopharmacology. 2024 Jan;49(1):282-284. doi: 10.1038/s41386-023-01667-4. Epub 2023 Aug 7.

Abstract

Pharmacogenomic technology is a developing field with enthusiastic interest and broad application potential. Three large, controlled studies have been published exploring the benefit of pharmacogenomically guided antidepressant treatment selection. Though all three studies did not show significant benefit of using this technology, these studies laid the foundation for further research that should address the limitations of this previous research and currently available commercial platforms. Future research needs to include large scale pharmacogenomic trials with GWAS analytics across diverse groups with attention to cost-effectiveness models, particularly for cases of treatment resistance and polypharmacy. The application of results from these large scale pharmacogenomic trials must also include exploring optimal EHR user interface design.

摘要

药物基因组学技术是一个充满热情和广泛应用潜力的发展领域。已经发表了三项大型对照研究,探索了基于药物基因组学的抗抑郁药治疗选择的益处。尽管这三项研究都没有显示出使用这项技术的显著益处,但这些研究为进一步研究奠定了基础,应该解决之前研究和当前可用商业平台的局限性。未来的研究需要包括大规模的药物基因组学试验,使用全基因组关联分析(GWAS)在不同群体中进行,同时要注意成本效益模型,特别是对于治疗抵抗和多药治疗的情况。这些大规模药物基因组学试验结果的应用还必须包括探索最佳的电子健康记录(EHR)用户界面设计。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验