Suppr超能文献

揭示准四方相WO薄膜的电子结构。

Unveiling the Electronic Structure of Pseudotetragonal WO Thin Films.

作者信息

Mazzola F, Hassani H, Amoroso D, Chaluvadi S K, Fujii J, Polewczyk V, Rajak P, Koegler Max, Ciancio R, Partoens B, Rossi G, Vobornik I, Ghosez P, Orgiani P

机构信息

Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.

Istituto Officina dei Materiali (IOM)-CNR, Area Science Park, 34149 Trieste, Italy.

出版信息

J Phys Chem Lett. 2023 Aug 17;14(32):7208-7214. doi: 10.1021/acs.jpclett.3c01546. Epub 2023 Aug 8.

Abstract

WO is a 5d compound that undergoes several structural transitions in its bulk form. Its versatility is well-documented, with a wide range of applications, such as flexopiezoelectricity, electrochromism, gating-induced phase transitions, and its ability to improve the performance of Li-based batteries. The synthesis of WO thin films holds promise in stabilizing electronic phases for practical applications. However, despite its potential, the electronic structure of this material remains experimentally unexplored. Furthermore, its thermal instability limits its use in certain technological devices. Here, we employ tensile strain to stabilize WO thin films, which we call the pseudotetragonal phase, and investigate its electronic structure using a combination of photoelectron spectroscopy and density functional theory calculations. This study reveals the Fermiology of the system, notably identifying significant energy splittings between different orbital manifolds arising from atomic distortions. These splittings, along with the system's thermal stability, offer a potential avenue for controlling inter- and intraband scattering for electronic applications.

摘要

WO是一种5d化合物,其块状形式会经历几种结构转变。它的多功能性有充分的文献记载,具有广泛的应用,如挠曲压电性、电致变色、门控诱导相变,以及改善锂基电池性能的能力。WO薄膜的合成有望稳定电子相以用于实际应用。然而,尽管它有潜力,但这种材料的电子结构在实验上仍未被探索。此外,其热不稳定性限制了它在某些技术设备中的使用。在这里,我们利用拉伸应变来稳定WO薄膜,我们将其称为假四方相,并结合光电子能谱和密度泛函理论计算来研究其电子结构。这项研究揭示了该系统的费米面学,特别确定了由原子畸变引起的不同轨道流形之间的显著能量分裂。这些分裂以及系统的热稳定性为电子应用中控制带间和带内散射提供了一条潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74f7/10440808/15ddc5aaa5f7/jz3c01546_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验