Wang Kun, Li Du, Wang Jia, Hao Yifei, Anderson Hailey, Yang Li, Hong Xia
Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0299, United States.
Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States.
ACS Nano. 2023 Aug 22;17(16):15787-15795. doi: 10.1021/acsnano.3c03567. Epub 2023 Aug 8.
Ferroelectric van der Waals CuInPS possesses intriguing quadruple-well states and negative piezoelectricity. Its technological implementation has been impeded by the relatively low Curie temperature (bulk ∼ 42 °C) and the lack of precise domain control. Here we show that CuInPS can be immune to the finite size effect and exhibits enhanced ferroelectricity, piezoelectricity, and polar alignment in the ultrathin limit when it is interfaced with ferroelectric oxide PbZrTiO films. Piezoresponse force microscopy studies reveal that the polar domains in thin CuInPS fully conform to those of the underlying PbZrTiO, where the piezoelectric coefficient changes sign and increases sharply with reducing thickness. High temperature domain imaging points to a significantly enhanced of >200 °C for 13 nm CuInPS on PbZrTiO. Density functional theory modeling and Monte Carlo simulations show that the enhanced polar alignment and can be attributed to interface-mediated structure distortion in CuInPS. Our study provides an effective material strategy to engineer the polar properties of CuInPS for flexible nanoelectronic, optoelectronic, and mechanical applications.
铁电范德华CuInPS具有引人入胜的四阱态和负压电性。其技术应用受到相对较低的居里温度(体相约42°C)和缺乏精确畴控制的阻碍。在此,我们表明,当CuInPS与铁电氧化物PbZrTiO薄膜接触时,它可以免受有限尺寸效应的影响,并在超薄极限下表现出增强的铁电性、压电性和极性排列。压电力显微镜研究表明,薄CuInPS中的极性畴与下层PbZrTiO的极性畴完全一致,其中压电系数改变符号并随着厚度减小而急剧增加。高温畴成像表明,在PbZrTiO上的13 nm CuInPS的居里温度显著提高到>200°C。密度泛函理论建模和蒙特卡罗模拟表明,增强的极性排列和居里温度可归因于CuInPS中界面介导的结构畸变。我们的研究提供了一种有效的材料策略,用于设计用于柔性纳米电子、光电子和机械应用的CuInPS的极性特性。