Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, Connecticut 06510, United States.
Microbial Sciences Institute, Yale University, 840 West Campus Drive, West Haven, Connecticut 06516, United States.
J Phys Chem B. 2023 Aug 17;127(32):7148-7161. doi: 10.1021/acs.jpcb.3c02912. Epub 2023 Aug 8.
Structural determinants of a 10-fold variation in electrical conductivity for helical homopolymers of tetra-, hexa-, and octa-heme cytochromes (named Omc- E, S, and Z, respectively) from are investigated with the Pathways model for electron tunneling, classical molecular dynamics, and hybrid quantum/classical molecular mechanics. Thermally averaged electronic couplings for through-space heme-to-heme electron transfer in the "nanowires" computed with density functional theory are ≤0.015 eV. Pathways analyses also indicate that couplings match within a factor of 5 for all "nanowires", but some alternative tunneling routes are found involving covalent protein backbone bonds (Omc- S and Z) or propionic acid-ligating His H-bonds on adjacent hemes (OmcZ). Reorganization energies computed from electrostatic vertical energy gaps or a version of the Marcus continuum expression parameterized on the total (donor + acceptor) solvent-accessible surface area typically agree within 20% and fall within the range 0.48-0.98 eV. Reaction free energies in all three "nanowires" are ≤|0.28| eV, even though Coulombic interactions primarily tune the site redox energies by 0.7-1.2 eV. Given the conserved energetic parameters, redox conductivity differs by < 10-fold among the cytochrome "nanowires". Redox currents do not exceed 3.0 × 10 pA at a physiologically relevant 0.1 V bias, with the slowest electron transfers being on a (μs) timescale much faster than typical (ms) enzymatic turnovers. Thus, the "nanowires" are proposed to be functionally robust to variations in structure that provide a habitat-customized protein interface. The 30 pA to 30 nA variation in conductivity previously reported from atomic force microscopy experiments is not intrinsic to the structures and/or does not result from the physiologically relevant redox conduction mechanism.
对来自的四、六和八血红素细胞色素(分别命名为 Omc-E、S 和 Z)的螺旋同聚物的电导率 10 倍变化的结构决定因素进行了研究,使用了电子隧道的 Pathways 模型、经典分子动力学和混合量子/经典分子力学。用密度泛函理论计算的“纳米线”中通过空间血红素-血红素电子转移的热平均电子耦合小于 0.015 eV。Pathways 分析还表明,对于所有“纳米线”,耦合在 5 倍以内匹配,但也发现了一些替代的隧道途径,涉及共价蛋白质骨架键(Omc-S 和 Z)或相邻血红素上丙酸配体 His H 键(OmcZ)。从静电垂直能隙或基于总(供体+受体)溶剂可及表面积的 Marcus 连续表达式的版本计算得到的重组能通常在 20%以内一致,落在 0.48-0.98 eV 的范围内。在所有三个“纳米线”中,反应自由能都≤|0.28| eV,尽管库仑相互作用主要通过 0.7-1.2 eV 来调整位点氧化还原能量。考虑到保守的能量参数,氧化还原电导率在细胞色素“纳米线”之间相差不到 10 倍。在生理相关的 0.1 V 偏压下,氧化还原电流不会超过 3.0×10 pA,其中最慢的电子转移在(μs)时间尺度上比典型的(ms)酶周转率快得多。因此,“纳米线”被认为对提供栖息地定制蛋白质界面的结构变化具有功能鲁棒性。以前从原子力显微镜实验报告的 30 pA 到 30 nA 的电导率变化不是结构固有的,也不是由于生理相关的氧化还原传导机制造成的。