School of Biochemistry, University of Bristol, Bristol, UK.
School of Chemistry, University of Bristol, Bristol, UK.
Protein Sci. 2024 Aug;33(8):e5113. doi: 10.1002/pro.5113.
Nature has evolved diverse electron transport proteins and multiprotein assemblies essential to the generation and transduction of biological energy. However, substantially modifying or adapting these proteins for user-defined applications or to gain fundamental mechanistic insight can be hindered by their inherent complexity. De novo protein design offers an attractive route to stripping away this confounding complexity, enabling us to probe the fundamental workings of these bioenergetic proteins and systems, while providing robust, modular platforms for constructing completely artificial electron-conducting circuitry. Here, we use a set of de novo designed mono-heme and di-heme soluble and membrane proteins to delineate the contributions of electrostatic micro-environments and dielectric properties of the surrounding protein medium on the inter-heme redox cooperativity that we have previously reported. Experimentally, we find that the two heme sites in both the water-soluble and membrane constructs have broadly equivalent redox potentials in isolation, in agreement with Poisson-Boltzmann Continuum Electrostatics calculations. BioDC, a Python program for the estimation of electron transfer energetics and kinetics within multiheme cytochromes, also predicts equivalent heme sites, and reports that burial within the low dielectric environment of the membrane strengthens heme-heme electrostatic coupling. We conclude that redox cooperativity in our diheme cytochromes is largely driven by heme electrostatic coupling and confirm that this effect is greatly strengthened by burial in the membrane. These results demonstrate that while our de novo proteins present minimalist, new-to-nature constructs, they enable the dissection and microscopic examination of processes fundamental to the function of vital, yet complex, bioenergetic assemblies.
大自然已经进化出了多种电子传输蛋白和多蛋白复合物,这些对于生物能量的产生和传递至关重要。然而,要对这些蛋白质进行用户定义的应用的修改或改编,或者获得基本的机制见解,可能会受到其固有复杂性的阻碍。从头设计蛋白质提供了一种有吸引力的途径,可以去除这种令人困惑的复杂性,使我们能够探究这些生物能量蛋白和系统的基本工作原理,同时为构建完全人工的电子导电电路提供强大的、模块化的平台。在这里,我们使用一组从头设计的单血红素和双血红素可溶性和膜蛋白,来描绘我们之前报道的静电微环境和周围蛋白质介质的介电特性对血红素间氧化还原协同作用的贡献。实验上,我们发现,在孤立状态下,水溶性和膜构建体中的两个血红素部位的氧化还原电位具有广泛的等效性,这与泊松-玻尔兹曼连续静电计算一致。BioDC 是一个用于估计多血红素细胞色素内电子转移能量学和动力学的 Python 程序,它也预测了等效的血红素部位,并报告说在膜的低介电环境中的埋藏增强了血红素-血红素静电耦合。我们得出结论,我们的双血红素细胞色素中的氧化还原协同作用主要是由血红素静电耦合驱动的,并证实这种效应在膜中埋藏时大大增强。这些结果表明,虽然我们的从头设计的蛋白质呈现出最小化的、新的自然结构,但它们能够对生命中复杂的生物能量组装体的基本功能进行剖析和微观检查。