Suppr超能文献

利用微电极几何形状实现单细胞中单个体分泌事件的全面检测。

Exploiting Microelectrode Geometry for Comprehensive Detection of Individual Exocytosis Events at Single Cells.

出版信息

ACS Sens. 2023 Aug 25;8(8):3187-3194. doi: 10.1021/acssensors.3c00884. Epub 2023 Aug 8.

Abstract

Carbon fiber microelectrodes are commonly used for real-time monitoring of individual exocytosis events at single cells. Since the nature of an electrochemical signal is fundamentally governed by mass transport to the electrode surface, microelectrode geometry can be exploited to achieve precise and accurate measurements. Researchers traditionally pair amperometric measurements of exocytosis with a ∼10-μm diameter, disk microelectrode in an "artificial synapse" configuration to directly monitor individual release events from single cells. Exocytosis is triggered, and released molecules diffuse to the "post-synaptic" electrode for oxidation. This results in a series of distinct current spikes corresponding to individual exocytosis events. However, it remains unclear how much of the material escapes detection. In this work, the performance of 10- and 34-μm diameter carbon fiber disk microelectrodes was directly compared in monitoring exocytosis at single chromaffin cells. The 34-μm diameter electrode was more sensitive to catecholamines and enkephalins than its traditional, 10-μm diameter counterpart, and it more effectively covered the entire cell. As such, the larger sensor detected more exocytosis events overall, as well as a larger quantal size, suggesting that the traditional tools underestimate the above measurements. Both sensors reliably measured l-DOPA-evoked changes in quantal size, and both exhibited diffusional loss upon adjustment of cell-electrode spacing. Finite element simulations using COMSOL support the improved collection efficiency observed using the larger sensor. Overall, this work demonstrates how electrode geometry can be exploited for improved detection of exocytosis events by addressing diffusional loss─an often-overlooked source of inaccuracy in single-cell measurements.

摘要

碳纤维微电极常用于实时监测单细胞中单细胞胞吐事件。由于电化学信号的本质从根本上受限于向电极表面的质量传输,因此可以利用微电极几何形状来实现精确和准确的测量。研究人员传统上将电化学测量与直径约 10 μm 的盘状微电极配对,以“人工突触”配置直接监测单个细胞的单个释放事件。胞吐作用被触发,释放的分子扩散到“突触后”电极进行氧化。这导致与单个胞吐事件相对应的一系列独特的电流尖峰。然而,仍不清楚有多少物质逃脱了检测。在这项工作中,直接比较了 10 μm 和 34 μm 直径的碳纤维盘状微电极在监测单个嗜铬细胞胞吐作用中的性能。与传统的 10 μm 直径电极相比,34 μm 直径的电极对儿茶酚胺和脑啡肽更敏感,并且更有效地覆盖整个细胞。因此,较大的传感器总体上检测到更多的胞吐事件,以及更大的量子大小,这表明传统工具低估了上述测量值。两种传感器都能可靠地测量 l-DOPA 引发的量子大小变化,并且在调整细胞-电极间距时都会出现扩散损失。COMSOL 中的有限元模拟支持使用较大传感器观察到的收集效率提高。总体而言,这项工作展示了如何通过解决扩散损失来利用电极几何形状来提高胞吐事件的检测效率-这是单细胞测量中经常被忽视的不准确来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df7/10464603/8e8e66411c17/se3c00884_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验