Suppr超能文献

交联剂化学对葡萄糖脱氢酶和硫堇在氧化还原交联网络中生物电催化反应的影响。

Effects of Cross-linker Chemistry on Bioelectrocatalytic Reactions in a Redox Cross-linked Network of Glucose Dehydrogenase and Thionine.

机构信息

Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-5358, Japan.

TIMC-IMAG/CNRS/INSERM, UMR 5525, Université Grenoble Alpes, Grenoble 38000, France.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 21;16(33):44004-44017. doi: 10.1021/acsami.4c08782. Epub 2024 Aug 12.

Abstract

Enzyme-mediator bioconjugation is emerging as a building block for designing electrode platforms for the construction of biosensors and biofuel cells. Here, we report a one-pot bioconjugation technique for flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) and thionine (TH) using a series of cross-linkers, including epoxy, -hydroxysuccinimide (NHS), and aldehydes. In this technique, FAD-GDH and thionine are conjugated through an amine cross-linking reaction to generate a redox network, which has been successfully employed for the oxidation of glucose. The bioconjugation chemistry of cross-linkers with the amino groups on FAD-GDH and thionine plays a vital role in generating distinct network structures. The epoxy-type cross-linker reacts with the primary and secondary amines of thionine at room temperature, thereby producing an FAD-GDH-TH-FAD-GDH hyperbranched bioconjugate network, the aldehyde undergoes a rapid cross-linking reaction to produce a network of FAD-GDH-FAD-GDH, while the NHS-based cross-linker can react with the primary amines of both FAD-GDH and thionine, forming an FAD-GDH-cross-linker-TH polymeric network. This reaction has the potential to enable the conjugation of a redox mediator with a FAD-GDH network, which is particularly essential when designing an enzyme electrode platform. The data demonstrated that the polymeric cross-linked network based on the NHS cross-linker exhibited a considerable increase in electron transport while producing a catalytic current of 830 μA cm. The cross-linker spacer arm length also affects the overall electrochemical function of the network and its performance; an adequate spacer length containing a cross-linker is required, resulting in a faster electron transfer. Finally, a leaching test confirmed that the stability of the enzyme electrode was improved when the electrode was tested using the redox probe. This study elucidates the relationship between cross-linking chemistry and redox network structure and enhances the high performance of enzyme electrode platforms for the oxidation of glucose.

摘要

酶介导的生物偶联技术正在成为设计用于构建生物传感器和生物燃料电池的电极平台的构建模块。在这里,我们报告了一种使用一系列交联剂(包括环氧化物、-羟基琥珀酰亚胺(NHS)和醛)对黄素腺嘌呤二核苷酸依赖性葡萄糖脱氢酶(FAD-GDH)和硫堇(TH)进行一锅法生物偶联的技术。在该技术中,FAD-GDH 和硫堇通过胺交联反应偶联,生成氧化还原网络,该网络已成功用于葡萄糖的氧化。交联剂与 FAD-GDH 和硫堇上的氨基的生物偶联化学在生成独特的网络结构中起着至关重要的作用。FAD-GDH 和硫堇上的伯胺和仲胺与环氧化物型交联剂在室温下反应,从而产生 FAD-GDH-TH-FAD-GDH 超支化生物偶联网络,醛发生快速交联反应,生成 FAD-GDH-FAD-GDH 网络,而基于 NHS 的交联剂可以与 FAD-GDH 和硫堇的伯胺反应,形成 FAD-GDH-交联剂-TH 聚合物网络。这种反应有可能使氧化还原介体与 FAD-GDH 网络偶联,这在设计酶电极平台时尤为重要。数据表明,基于 NHS 交联剂的聚合物交联网络在产生 830 μA cm 的催化电流的同时,显著增加了电子传递。交联剂间隔臂长度也会影响网络的整体电化学功能及其性能;需要含有交联剂的足够间隔臂长度,从而实现更快的电子转移。最后,通过溶出试验证实,当使用氧化还原探针测试电极时,电极的稳定性得到了提高。本研究阐明了交联化学与氧化还原网络结构之间的关系,并提高了用于葡萄糖氧化的酶电极平台的高性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验