Suppr超能文献

AIPSS-MF 机器学习预后评分在接受鲁索利替尼治疗的骨髓纤维化患者队列中的验证。

AIPSS-MF machine learning prognostic score validation in a cohort of myelofibrosis patients treated with ruxolitinib.

机构信息

Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy.

Department of Haematology, Guy's and St Thomas NHS Foundation Trust, London, UK.

出版信息

Cancer Rep (Hoboken). 2023 Oct;6(10):e1881. doi: 10.1002/cnr2.1881. Epub 2023 Aug 8.

Abstract

BACKGROUND

In myelofibrosis (MF), new model scores are continuously proposed to improve the ability to better identify patients with the worst outcomes. In this context, the Artificial Intelligence Prognostic Scoring System for Myelofibrosis (AIPSS-MF), and the Response to Ruxolitinib after 6 months (RR6) during the ruxolitinib (RUX) treatment, could play a pivotal role in stratifying these patients.

AIMS

We aimed to validate AIPSS-MF in patients with MF who started RUX treatment, compared to the standard prognostic scores at the diagnosis and the RR6 scores after 6 months of treatment.

METHODS AND RESULTS

At diagnosis, the AIPSS-MF performs better than the widely used IPSS for primary myelofibrosis (C-index 0.636 vs. 0.596) and MYSEC-PM for secondary (C-index 0.616 vs. 0.593). During RUX treatment, we confirmed the leading role of RR6 in predicting an inadequate response by these patients to JAKi therapy compared to AIPSS-MF (0.682 vs. 0.571).

CONCLUSION

The new AIPSS-MF prognostic score confirms that it can adequately stratify this subgroup of patients already at diagnosis better than standard models, laying the foundations for new prognostic models developed tailored to the patient based on artificial intelligence.

摘要

背景

在骨髓纤维化(MF)中,不断提出新的模型评分,以提高更好地识别预后最差患者的能力。在这种情况下,人工智能骨髓纤维化预后评分系统(AIPSS-MF)和治疗 6 个月后的芦可替尼反应(RR6)在对这些患者进行分层方面可能发挥关键作用。

目的

我们旨在验证开始芦可替尼(RUX)治疗的 MF 患者的 AIPSS-MF,与诊断时的标准预后评分和治疗 6 个月后的 RR6 评分进行比较。

方法和结果

在诊断时,AIPSS-MF 比广泛使用的原发性骨髓纤维化的 IPSS(C 指数 0.636 对 0.596)和继发性骨髓纤维化的 MYSEC-PM(C 指数 0.616 对 0.593)表现更好。在 RUX 治疗期间,我们证实 RR6 在预测这些患者对 JAKi 治疗反应不足方面优于 AIPSS-MF(0.682 对 0.571)。

结论

新的 AIPSS-MF 预后评分证实,它已经可以在诊断时比标准模型更好地对这亚组患者进行充分分层,为基于人工智能为患者量身定制的新预后模型奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验