Suppr超能文献

AMP-EBiLSTM:采用新型深度学习策略准确预测抗菌肽

AMP-EBiLSTM: employing novel deep learning strategies for the accurate prediction of antimicrobial peptides.

作者信息

Wang Yuanda, Wang Liyang, Li Chengquan, Pei Yilin, Liu Xiaoxiao, Tian Yu

机构信息

School of Modern Post (School of Automation), Beijing University of Posts and Telecommunications, Beijing, China.

School of Clinical Medicine, Tsinghua University, Beijing, China.

出版信息

Front Genet. 2023 Jul 24;14:1232117. doi: 10.3389/fgene.2023.1232117. eCollection 2023.

Abstract

Antimicrobial peptides are present ubiquitously in intra- and extra-biological environments and display considerable antibacterial and antifungal activities. Clinically, it has shown good antibacterial effect in the treatment of diabetic foot and its complications. However, the discovery and screening of antimicrobial peptides primarily rely on wet lab experiments, which are inefficient. This study endeavors to create a precise and efficient method of predicting antimicrobial peptides by incorporating novel machine learning technologies. We proposed a deep learning strategy named AMP-EBiLSTM to accurately predict them, and compared its performance with ensemble learning and baseline models. We utilized Binary Profile Feature (BPF) and Pseudo Amino Acid Composition (PSEAAC) for effective local sequence capture and amino acid information extraction, respectively, in deep learning and ensemble learning. Each model was cross-validated and externally tested independently. The results demonstrate that the Enhanced Bi-directional Long Short-Term Memory (EBiLSTM) deep learning model outperformed others with an accuracy of 92.39% and AUC value of 0.9771 on the test set. On the other hand, the ensemble learning models demonstrated cost-effectiveness in terms of training time on a T4 server equipped with 16 GB of GPU memory and 8 vCPUs, with training durations varying from 0 to 30 s. Therefore, the strategy we propose is expected to predict antimicrobial peptides more accurately in the future.

摘要

抗菌肽广泛存在于生物体内外环境中,并具有相当强的抗菌和抗真菌活性。在临床上,它在治疗糖尿病足及其并发症方面已显示出良好的抗菌效果。然而,抗菌肽的发现和筛选主要依赖于湿实验室实验,效率较低。本研究致力于通过结合新型机器学习技术创建一种精确高效的抗菌肽预测方法。我们提出了一种名为AMP-EBiLSTM的深度学习策略来准确预测抗菌肽,并将其性能与集成学习和基线模型进行比较。在深度学习和集成学习中,我们分别利用二元轮廓特征(BPF)和伪氨基酸组成(PSEAAC)有效地进行局部序列捕获和氨基酸信息提取。每个模型都进行了交叉验证并独立进行外部测试。结果表明,增强型双向长短期记忆(EBiLSTM)深度学习模型在测试集上表现优于其他模型,准确率为92.39%,AUC值为0.9771。另一方面,在配备16GB GPU内存和8个vCPU的T4服务器上,集成学习模型在训练时间方面显示出成本效益,训练持续时间从0到30秒不等。因此,我们提出的策略有望在未来更准确地预测抗菌肽。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4323/10405519/b68af73d2ba6/fgene-14-1232117-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验