AI4AMP:一种使用基于物理化学性质编码方法和深度学习的抗菌肽预测工具

AI4AMP: an Antimicrobial Peptide Predictor Using Physicochemical Property-Based Encoding Method and Deep Learning.

作者信息

Lin Tzu-Tang, Yang Li-Yen, Lu I-Hsuan, Cheng Wen-Chih, Hsu Zhe-Ren, Chen Shu-Hwa, Lin Chung-Yen

机构信息

Institute of Information Science, Academia Sinica, Taipei, Taiwan.

TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.

出版信息

mSystems. 2021 Dec 21;6(6):e0029921. doi: 10.1128/mSystems.00299-21. Epub 2021 Nov 16.

Abstract

Antimicrobial peptides (AMPs) are innate immune components that have recently stimulated considerable interest among drug developers due to their potential as antibiotic substitutes. AMPs are notable for their fundamental properties of microbial membrane structural interference and the biomedical applications of killing or suppressing microbes. New AMP candidates must be developed to oppose antibiotic resistance. However, the discovery of novel AMPs through wet-lab screening approaches is inefficient and expensive. The prediction model investigated in this study may help accelerate this process. We collected both the up-to-date AMP data set and unbiased negatives based on which the protein-encoding methods and deep learning model for AMPs were investigated. The external testing results indicated that our trained model achieved 90% precision, outperforming current methods. We implemented our model on a user-friendly web server, AI4AMP, to accurately predict the antimicrobial potential of a given protein sequence and perform proteome screening. Antimicrobial peptides (AMPs) are innate immune components that have aroused a great deal of interest among drug developers recently, as they may become a substitute for antibiotics. New candidates need to fight antibiotic resistance, while discovering novel AMPs through wet-lab screening approaches is inefficient and expensive. To accelerate the discovery of new AMPs, we both collected the up-to-date antimicrobial peptide data set and integrated the protein-encoding methods with a deep learning model. The trained model outperforms the current methods and is implemented into a user-friendly web server, AI4AMP, to accurately predict the antimicrobial properties of a given protein sequence and perform proteome screening. An author video summary of this article is available.

摘要

抗菌肽(AMPs)是先天性免疫成分,由于其作为抗生素替代品的潜力,最近引起了药物研发人员的极大兴趣。抗菌肽以其对微生物膜结构的干扰以及杀灭或抑制微生物的生物医学应用等基本特性而著称。必须开发新的抗菌肽候选物以对抗抗生素耐药性。然而,通过湿实验室筛选方法发现新型抗菌肽效率低下且成本高昂。本研究中所研究的预测模型可能有助于加速这一过程。我们收集了最新的抗菌肽数据集和无偏阴性样本,并在此基础上研究了抗菌肽的蛋白质编码方法和深度学习模型。外部测试结果表明,我们训练的模型达到了90%的精度,优于当前方法。我们在一个用户友好的网络服务器AI4AMP上实现了我们的模型,以准确预测给定蛋白质序列的抗菌潜力并进行蛋白质组筛选。抗菌肽(AMPs)是先天性免疫成分,最近引起了药物研发人员的极大兴趣,因为它们可能成为抗生素的替代品。新的候选物需要对抗抗生素耐药性,而通过湿实验室筛选方法发现新型抗菌肽效率低下且成本高昂。为了加速新型抗菌肽的发现,我们既收集了最新的抗菌肽数据集,又将蛋白质编码方法与深度学习模型相结合。训练后的模型优于当前方法,并被应用到一个用户友好的网络服务器AI4AMP中,以准确预测给定蛋白质序列的抗菌特性并进行蛋白质组筛选。本文有作者视频总结。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c591/8594441/78159aa46cf9/msystems.00299-21-f001.jpg

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索