Canalini Luca, Klein Jan, Waldmannstetter Diana, Kofler Florian, Cerri Stefano, Hering Alessa, Heldmann Stefan, Schlaeger Sarah, Menze Bjoern H, Wiestler Benedikt, Kirschke Jan, Hahn Horst K
Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.
Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany.
Front Neuroimaging. 2022 Sep 20;1:977491. doi: 10.3389/fnimg.2022.977491. eCollection 2022.
Registration methods facilitate the comparison of multiparametric magnetic resonance images acquired at different stages of brain tumor treatments. Image-based registration solutions are influenced by the sequences chosen to compute the distance measure, and the lack of image correspondences due to the resection cavities and pathological tissues. Nonetheless, an evaluation of the impact of these input parameters on the registration of longitudinal data is still missing. This work evaluates the influence of multiple sequences, namely T1-weighted (T1), T2-weighted (T2), contrast enhanced T1-weighted (T1-CE), and T2 Fluid Attenuated Inversion Recovery (FLAIR), and the exclusion of the pathological tissues on the non-rigid registration of pre- and post-operative images. We here investigate two types of registration methods, an iterative approach and a convolutional neural network solution based on a 3D U-Net. We employ two test sets to compute the mean target registration error (mTRE) based on corresponding landmarks. In the first set, markers are positioned exclusively in the surroundings of the pathology. The methods employing T1-CE achieves the lowest mTREs, with a improvement up to 0.8 mm for the iterative solution. The results are higher than the baseline when using the FLAIR sequence. When excluding the pathology, lower mTREs are observable for most of the methods. In the second test set, corresponding landmarks are located in the entire brain volumes. Both solutions employing T1-CE obtain the lowest mTREs, with a decrease up to 1.16 mm for the iterative method, whereas the results worsen using the FLAIR. When excluding the pathology, an improvement is observable for the CNN method using T1-CE. Both approaches utilizing the T1-CE sequence obtain the best mTREs, whereas the FLAIR is the least informative to guide the registration process. Besides, the exclusion of pathology from the distance measure computation improves the registration of the brain tissues surrounding the tumor. Thus, this work provides the first numerical evaluation of the influence of these parameters on the registration of longitudinal magnetic resonance images, and it can be helpful for developing future algorithms.
配准方法有助于比较在脑肿瘤治疗不同阶段获取的多参数磁共振图像。基于图像的配准解决方案受用于计算距离度量的序列以及由于切除腔和病理组织导致的图像对应关系缺失的影响。尽管如此,仍缺少对这些输入参数对纵向数据配准影响的评估。这项工作评估了多个序列的影响,即T1加权(T1)、T2加权(T2)、对比增强T1加权(T1-CE)和T2液体衰减反转恢复(FLAIR),以及排除病理组织对术前和术后图像非刚性配准的影响。我们在此研究两种配准方法,一种迭代方法和一种基于3D U-Net的卷积神经网络解决方案。我们使用两个测试集基于相应地标计算平均目标配准误差(mTRE)。在第一组中,标记仅位于病变周围。采用T1-CE的方法实现了最低的mTRE,迭代解决方案的改善高达0.8毫米。使用FLAIR序列时结果高于基线。排除病变时,大多数方法可观察到较低的mTRE。在第二个测试集中,相应地标位于整个脑体积中。采用T1-CE的两种解决方案都获得了最低的mTRE,迭代方法的降低高达1.16毫米,而使用FLAIR时结果变差。排除病变时,使用T1-CE的CNN方法可观察到改善。利用T1-CE序列的两种方法都获得了最佳的mTRE,而FLAIR对指导配准过程的信息量最少。此外,从距离度量计算中排除病变可改善肿瘤周围脑组织的配准。因此,这项工作首次对这些参数对纵向磁共振图像配准的影响进行了数值评估,并且有助于开发未来的算法。