Kamraoui Reda Abdellah, Mansencal Boris, Manjon José V, Coupé Pierrick
PICTURA, Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, Talence, France.
ITACA, Universitat Politècnica de València, Valencia, Spain.
Front Neuroimaging. 2022 Aug 25;1:948235. doi: 10.3389/fnimg.2022.948235. eCollection 2022.
The detection of new multiple sclerosis (MS) lesions is an important marker of the evolution of the disease. The applicability of learning-based methods could automate this task efficiently. However, the lack of annotated longitudinal data with new-appearing lesions is a limiting factor for the training of robust and generalizing models. In this study, we describe a deep-learning-based pipeline addressing the challenging task of detecting and segmenting new MS lesions. First, we propose to use transfer-learning from a model trained on a segmentation task using single time-points. Therefore, we exploit knowledge from an easier task and for which more annotated datasets are available. Second, we propose a data synthesis strategy to generate realistic longitudinal time-points with new lesions using single time-point scans. In this way, we pretrain our detection model on large synthetic annotated datasets. Finally, we use a data-augmentation technique designed to simulate data diversity in MRI. By doing that, we increase the size of the available small annotated longitudinal datasets. Our ablation study showed that each contribution lead to an enhancement of the segmentation accuracy. Using the proposed pipeline, we obtained the best score for the segmentation and the detection of new MS lesions in the MSSEG2 MICCAI challenge.
新多发性硬化症(MS)病灶的检测是该疾病进展的一个重要标志。基于学习的方法的适用性可以有效地实现这一任务的自动化。然而,缺乏带有新出现病灶的标注纵向数据是训练强大且通用的模型的一个限制因素。在本研究中,我们描述了一种基于深度学习的流程,用于解决检测和分割新MS病灶这一具有挑战性的任务。首先,我们提议使用从在单时间点分割任务上训练的模型进行迁移学习。因此,我们利用来自一个更简单任务且有更多标注数据集的知识。其次,我们提出一种数据合成策略,使用单时间点扫描生成带有新病灶的逼真纵向时间点。通过这种方式,我们在大型合成标注数据集上对检测模型进行预训练。最后,我们使用一种旨在模拟MRI数据多样性的数据增强技术。这样,我们增加了可用的小标注纵向数据集的规模。我们的消融研究表明,每一项贡献都提高了分割精度。使用所提出的流程,我们在MSSEG2 MICCAI挑战赛中获得了新MS病灶分割和检测的最佳分数。