Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, PICTURA, F-33400 Talence, France.
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, PICTURA, F-33400 Talence, France.
Med Image Anal. 2022 Feb;76:102312. doi: 10.1016/j.media.2021.102312. Epub 2021 Nov 27.
Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation conditions such as Longitudinal MS Lesion Segmentation Challenge (ISBI Challenge). However, state-of-the-art approaches trained to perform well on highly-controlled datasets fail to generalize on clinical data from unseen datasets. Instead of proposing another improvement of the segmentation accuracy, we propose a novel method robust to domain shift and performing well on unseen datasets, called DeepLesionBrain (DLB). This generalization property results from three main contributions. First, DLB is based on a large group of compact 3D CNNs. This spatially distributed strategy aims to produce a robust prediction despite the risk of generalization failure of some individual networks. Second, we propose a hierarchical specialization learning (HSL) by pre-training a generic network over the whole brain, before using its weights as initialization to locally specialized networks. By this end, DLB learns both generic features extracted at global image level and specific features extracted at local image level. Finally, DLB includes a new image quality data augmentation to reduce dependency to training data specificity (e.g., acquisition protocol). DLB generalization was validated in cross-dataset experiments on MSSEG'16, ISBI challenge, and in-house datasets. During experiments, DLB showed higher segmentation accuracy, better segmentation consistency and greater generalization performance compared to state-of-the-art methods. Therefore, DLB offers a robust framework well-suited for clinical practice.
最近,基于卷积神经网络(CNN)的分割方法在自动多发性硬化症(MS)病变分割中表现出了有前景的性能。在纵向 MS 病变分割挑战赛(ISBI 挑战赛)等控制评估条件下,这些技术甚至超过了人类专家的表现。然而,为在高度受控的数据集上表现良好而训练的最先进方法无法在来自未见数据集的临床数据上进行泛化。我们没有提出另一种提高分割准确性的方法,而是提出了一种对域偏移具有鲁棒性且在未见数据集上表现良好的新方法,称为 DeepLesionBrain(DLB)。这种泛化特性源自三个主要贡献。首先,DLB 基于一组紧凑的 3D CNN。这种空间分布式策略旨在产生稳健的预测,尽管某些单个网络的泛化失败风险。其次,我们提出了一种分层专业化学习(HSL),通过在整个大脑上预训练一个通用网络,然后将其权重用作局部专业化网络的初始化。通过这种方式,DLB 学习了全局图像级别提取的通用特征和局部图像级别提取的特定特征。最后,DLB 包括一种新的图像质量数据增强,以减少对训练数据特异性(例如,采集协议)的依赖。在 MSSEG'16、ISBI 挑战赛和内部数据集上的跨数据集实验中验证了 DLB 的泛化能力。在实验中,与最先进的方法相比,DLB 表现出更高的分割准确性、更好的分割一致性和更大的泛化性能。因此,DLB 提供了一个稳健的框架,非常适合临床实践。